超声波
高强度聚焦超声
反向散射(电子邮件)
病变
传感器
无线电频率
材料科学
声学
强度(物理)
标准差
核医学
生物医学工程
医学
放射科
光学
物理
病理
计算机科学
数学
电信
统计
无线
作者
Xinliang Zheng,Shahram Vaezy
标识
DOI:10.1016/j.ultrasmedbio.2010.01.001
摘要
Abstract Ultrasound B-mode visualization of lesions produced in soft tissues using high-intensity focused ultrasound (HIFU) has been shown to be challenging when there is no cavitation activity and, therefore, no hyperechogenecity in the focal region. We investigated a method for the visualization and localization of HIFU-induced lesions after HIFU delivery was complete based on the change in backscattered radio-frequency (RF) signals. A HIFU transducer was used with focal dimension of 8 mm by 2 mm working at 5 MHz. HIFU was applied at different intensities to produce lesions in ex vivo chicken breast, with or without the generation of hyperecho in B-mode images. We compared lesion locations obtained from our RF-processing method, from measurement of physical lesions after exposure and from the B-mode images, if exposures had resulted in hyperecho. The results showed that the RF amplitude decreased as a function of time immediately after stopping the HIFU exposure. The lesions were clearly visualized in two-dimensional (2-D) images of the decay rate of RF amplitude, no matter with or without hyperecho. In experiments with hyperecho, when comparing to physical lesion locations, there was no statistically significant difference in the localization accuracy between the RF-based and the hyperecho-based method ( p = 0.76). In cases without hyperecho, the distance between RF-based locations and measured lesion locations was 3.37 ± 1.59 mm (mean ± standard deviation). The axial and lateral difference were 2.00 ± 2.31 mm and 0.85 ± 2.15 mm, respectively, and no statistically significant difference was found between lesion coordinates (axial: p = 0.37 and lateral: p = 0.15). We demonstrated the feasibility of our proposed RF-based method for the localization of HIFU-induced lesions immediately after HIFU treatment. Using the decay rate in RF amplitude as the signature of lesion formation, our method can detect lesion locations even without the appearance of hyperecho. (E-mail: xlzheng@u.washington.edu )
科研通智能强力驱动
Strongly Powered by AbleSci AI