Depressive Symptoms and Serum Lipid Fractions in Middle-Aged Men: Physiologic and Health Behavior Links

体质指数 胆固醇 内科学 萧条(经济学) 贝克抑郁量表 医学 肥胖 脂蛋白 血压 内分泌学 高密度脂蛋白 血脂 精神科 焦虑 宏观经济学 经济
作者
Cornel Victor Igna,Juhani Julkunen,Hannu Vanhanen,Pertti Keskivaara,Markku Verkasalo
出处
期刊:Psychosomatic Medicine [Ovid Technologies (Wolters Kluwer)]
卷期号:70 (9): 960-966 被引量:26
标识
DOI:10.1097/psy.0b013e318189a942
摘要

Objective: To investigate alternative hypothetical models that could clarify the relationship between depressive symptoms and serum cholesterol fractions, i.e., high-density lipoprotein (HDL) and low-density lipoprotein (LDL). It was hypothesized that the impact of the depressive symptoms on cholesterol fractions is mediated through health behavior and body mass index, and at the same time there would be a direct link from depression to cholesterol. Methods: The study sample consisted of 893 middle-age men who participated in a trial aimed at preventing the metabolic syndrome, Type 2 diabetes and cardiovascular diseases. Serum cholesterol was measured by the enzymatic method. Participants completed self-report questionnaires assessing health behavior and depressive symptoms. Results: Depressive symptoms consistently correlated statistically significantly with adverse lifestyle factors and, as hypothesized, positively with HDL. Path analyses supported the parallel existence of two main pathways: from depression through adverse health behavior to unfavorable cholesterol fraction balance, and a direct physiological link indicative of beneficial effect of depression on cholesterol levels. Conclusions: It is concluded that, among a sample of men, depressive symptoms are linked to cholesterol fractions through two different pathways. An adverse relationship of depression with serum lipids HDL-LDL balance is partly mediated through harmful health behaviors. At the same time, the results indicate a direct, physiological link between depressive symptoms and cholesterol that has a beneficial influence on the HDL-LDL balance. AIC = Akaike information criterion; BDI = Beck Depression Inventory; BMI = body mass index; BP = blood pressure; CAD = coronary artery disease; CFI = comparative fit index; CVD = cardiovascular diseases; EM = expectation-maximization; GFI = goodness-of-fit index; HDL = high-density lipoprotein; HMSP = Helsinki Metabolic Syndrome Prevention Trial; LDL = low-density lipoprotein; NFI = normed fit index; PGFI = parsimony goodness of fit index; RMSEA = root mean square error of approximation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
华仔应助王焕玉采纳,获得10
刚刚
顾矜应助hubanj采纳,获得30
1秒前
旺旺大礼包完成签到,获得积分10
1秒前
HYH发布了新的文献求助10
2秒前
爱笑的蛟凤完成签到,获得积分10
3秒前
3秒前
3秒前
3秒前
4秒前
4秒前
siyu完成签到,获得积分10
5秒前
5秒前
5秒前
avalanche应助李嘉图的栗子采纳,获得50
5秒前
6秒前
我们发布了新的文献求助10
6秒前
6秒前
6秒前
情怀应助Huan采纳,获得10
6秒前
7秒前
dd36发布了新的文献求助10
7秒前
chengmin发布了新的文献求助10
7秒前
7秒前
wu发布了新的文献求助10
7秒前
司空元正发布了新的文献求助10
8秒前
9秒前
天空之下完成签到,获得积分10
9秒前
刘欣悦完成签到 ,获得积分10
10秒前
一一发布了新的文献求助10
10秒前
siyu发布了新的文献求助10
10秒前
唯意完成签到,获得积分10
11秒前
11秒前
赤道永恒完成签到,获得积分10
11秒前
12秒前
顾城浪子完成签到,获得积分10
12秒前
wu完成签到,获得积分10
13秒前
生动路人发布了新的文献求助10
13秒前
13秒前
小马哥完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5468825
求助须知:如何正确求助?哪些是违规求助? 4572157
关于积分的说明 14333943
捐赠科研通 4498964
什么是DOI,文献DOI怎么找? 2464789
邀请新用户注册赠送积分活动 1453376
关于科研通互助平台的介绍 1427939