Identification of Disease-related Spatial Covariance Patterns using Neuroimaging Data

主成分分析 模式识别(心理学) 协方差 数学 体素 重采样 统计 数据集 人工智能 单变量 协方差分析 逻辑回归 多元统计 计算机科学
作者
Phoebe Spetsieris,Yilong Ma,Shichun Peng,Ji Hyun Ko,Vijay Dhawan,Chris C. Tang,David Eidelberg
出处
期刊:Journal of Visualized Experiments [MyJoVE Corporation]
卷期号: (76) 被引量:49
标识
DOI:10.3791/50319
摘要

The scaled subprofile model (SSM)(1-4) is a multivariate PCA-based algorithm that identifies major sources of variation in patient and control group brain image data while rejecting lesser components (Figure 1). Applied directly to voxel-by-voxel covariance data of steady-state multimodality images, an entire group image set can be reduced to a few significant linearly independent covariance patterns and corresponding subject scores. Each pattern, termed a group invariant subprofile (GIS), is an orthogonal principal component that represents a spatially distributed network of functionally interrelated brain regions. Large global mean scalar effects that can obscure smaller network-specific contributions are removed by the inherent logarithmic conversion and mean centering of the data(2,5,6). Subjects express each of these patterns to a variable degree represented by a simple scalar score that can correlate with independent clinical or psychometric descriptors(7,8). Using logistic regression analysis of subject scores (i.e. pattern expression values), linear coefficients can be derived to combine multiple principal components into single disease-related spatial covariance patterns, i.e. composite networks with improved discrimination of patients from healthy control subjects(5,6). Cross-validation within the derivation set can be performed using bootstrap resampling techniques(9). Forward validation is easily confirmed by direct score evaluation of the derived patterns in prospective datasets(10). Once validated, disease-related patterns can be used to score individual patients with respect to a fixed reference sample, often the set of healthy subjects that was used (with the disease group) in the original pattern derivation(11). These standardized values can in turn be used to assist in differential diagnosis(12,13) and to assess disease progression and treatment effects at the network level(7,14-16). We present an example of the application of this methodology to FDG PET data of Parkinson's Disease patients and normal controls using our in-house software to derive a characteristic covariance pattern biomarker of disease.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
华仔应助LPL采纳,获得10
1秒前
1秒前
gengxw完成签到,获得积分10
1秒前
TulIP发布了新的文献求助10
2秒前
两颗西柚完成签到,获得积分10
2秒前
欣慰的水壶完成签到,获得积分10
3秒前
6秒前
香蕉觅云应助hui采纳,获得10
7秒前
8秒前
8秒前
乐观香寒完成签到 ,获得积分10
9秒前
小马甲应助发八篇sci采纳,获得10
9秒前
9秒前
殴打阿达完成签到,获得积分10
9秒前
Akim应助jessica采纳,获得10
9秒前
qiuqi发布了新的文献求助10
11秒前
帅气东蒽完成签到,获得积分10
12秒前
12秒前
闪闪的屁股完成签到,获得积分10
14秒前
Catherine完成签到,获得积分10
16秒前
今后应助毅诚菌采纳,获得10
16秒前
16秒前
16秒前
无限的雁芙完成签到,获得积分20
16秒前
17秒前
三好学生完成签到,获得积分10
17秒前
仇峰完成签到,获得积分10
17秒前
18秒前
jiang应助上山的吗喽采纳,获得30
19秒前
西柚发布了新的文献求助30
20秒前
20秒前
dingz完成签到,获得积分0
20秒前
buno应助qiuqi采纳,获得10
21秒前
22秒前
Karouline完成签到,获得积分10
23秒前
jessica发布了新的文献求助10
25秒前
Bowingyang应助科研通管家采纳,获得10
26秒前
26秒前
zhonglv7应助科研通管家采纳,获得10
26秒前
深情安青应助科研通管家采纳,获得10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5604157
求助须知:如何正确求助?哪些是违规求助? 4688985
关于积分的说明 14857229
捐赠科研通 4696839
什么是DOI,文献DOI怎么找? 2541204
邀请新用户注册赠送积分活动 1507328
关于科研通互助平台的介绍 1471851