Identification of Disease-related Spatial Covariance Patterns using Neuroimaging Data

主成分分析 模式识别(心理学) 协方差 数学 体素 重采样 统计 数据集 人工智能 单变量 协方差分析 逻辑回归 多元统计 计算机科学
作者
Phoebe Spetsieris,Yilong Ma,Shichun Peng,Ji Hyun Ko,Vijay Dhawan,Chris C. Tang,David Eidelberg
出处
期刊:Journal of Visualized Experiments [MyJoVE Corporation]
卷期号: (76) 被引量:49
标识
DOI:10.3791/50319
摘要

The scaled subprofile model (SSM)(1-4) is a multivariate PCA-based algorithm that identifies major sources of variation in patient and control group brain image data while rejecting lesser components (Figure 1). Applied directly to voxel-by-voxel covariance data of steady-state multimodality images, an entire group image set can be reduced to a few significant linearly independent covariance patterns and corresponding subject scores. Each pattern, termed a group invariant subprofile (GIS), is an orthogonal principal component that represents a spatially distributed network of functionally interrelated brain regions. Large global mean scalar effects that can obscure smaller network-specific contributions are removed by the inherent logarithmic conversion and mean centering of the data(2,5,6). Subjects express each of these patterns to a variable degree represented by a simple scalar score that can correlate with independent clinical or psychometric descriptors(7,8). Using logistic regression analysis of subject scores (i.e. pattern expression values), linear coefficients can be derived to combine multiple principal components into single disease-related spatial covariance patterns, i.e. composite networks with improved discrimination of patients from healthy control subjects(5,6). Cross-validation within the derivation set can be performed using bootstrap resampling techniques(9). Forward validation is easily confirmed by direct score evaluation of the derived patterns in prospective datasets(10). Once validated, disease-related patterns can be used to score individual patients with respect to a fixed reference sample, often the set of healthy subjects that was used (with the disease group) in the original pattern derivation(11). These standardized values can in turn be used to assist in differential diagnosis(12,13) and to assess disease progression and treatment effects at the network level(7,14-16). We present an example of the application of this methodology to FDG PET data of Parkinson's Disease patients and normal controls using our in-house software to derive a characteristic covariance pattern biomarker of disease.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
汉堡包应助ye采纳,获得10
刚刚
132发布了新的文献求助10
刚刚
牛肉mianbo发布了新的文献求助10
刚刚
xxf发布了新的文献求助10
刚刚
隐形曼青应助xiaomage采纳,获得10
1秒前
1秒前
量子星尘发布了新的文献求助10
1秒前
2秒前
小丸子的樱桃红完成签到,获得积分10
3秒前
邱文县发布了新的文献求助10
3秒前
Mao关闭了Mao文献求助
3秒前
小郭完成签到,获得积分10
3秒前
jzt12138发布了新的文献求助10
4秒前
4秒前
4秒前
5秒前
FranklinQaQ完成签到,获得积分10
5秒前
5秒前
三莫莫莫发布了新的文献求助20
5秒前
大模型应助荒林采纳,获得30
5秒前
尔舟行发布了新的文献求助10
5秒前
6秒前
6秒前
大营村完成签到,获得积分10
6秒前
7秒前
实验顺利完成签到 ,获得积分20
8秒前
伪话痨家发布了新的文献求助30
8秒前
balenidezhupi发布了新的文献求助10
8秒前
9秒前
9秒前
tutu发布了新的文献求助10
9秒前
科研狗完成签到,获得积分10
9秒前
直率铃铛2发布了新的文献求助10
9秒前
核桃应助哦哦采纳,获得30
10秒前
11秒前
研究啥完成签到,获得积分20
11秒前
量子星尘发布了新的文献求助10
12秒前
13秒前
重要建辉发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5711580
求助须知:如何正确求助?哪些是违规求助? 5204694
关于积分的说明 15264720
捐赠科研通 4863859
什么是DOI,文献DOI怎么找? 2610959
邀请新用户注册赠送积分活动 1561329
关于科研通互助平台的介绍 1518667