Identification of Disease-related Spatial Covariance Patterns using Neuroimaging Data

主成分分析 模式识别(心理学) 协方差 数学 体素 重采样 统计 数据集 人工智能 单变量 协方差分析 逻辑回归 多元统计 计算机科学
作者
Phoebe Spetsieris,Yilong Ma,Shichun Peng,Ji Hyun Ko,Vijay Dhawan,Chris C. Tang,David Eidelberg
出处
期刊:Journal of Visualized Experiments [MyJOVE]
卷期号: (76) 被引量:49
标识
DOI:10.3791/50319
摘要

The scaled subprofile model (SSM)(1-4) is a multivariate PCA-based algorithm that identifies major sources of variation in patient and control group brain image data while rejecting lesser components (Figure 1). Applied directly to voxel-by-voxel covariance data of steady-state multimodality images, an entire group image set can be reduced to a few significant linearly independent covariance patterns and corresponding subject scores. Each pattern, termed a group invariant subprofile (GIS), is an orthogonal principal component that represents a spatially distributed network of functionally interrelated brain regions. Large global mean scalar effects that can obscure smaller network-specific contributions are removed by the inherent logarithmic conversion and mean centering of the data(2,5,6). Subjects express each of these patterns to a variable degree represented by a simple scalar score that can correlate with independent clinical or psychometric descriptors(7,8). Using logistic regression analysis of subject scores (i.e. pattern expression values), linear coefficients can be derived to combine multiple principal components into single disease-related spatial covariance patterns, i.e. composite networks with improved discrimination of patients from healthy control subjects(5,6). Cross-validation within the derivation set can be performed using bootstrap resampling techniques(9). Forward validation is easily confirmed by direct score evaluation of the derived patterns in prospective datasets(10). Once validated, disease-related patterns can be used to score individual patients with respect to a fixed reference sample, often the set of healthy subjects that was used (with the disease group) in the original pattern derivation(11). These standardized values can in turn be used to assist in differential diagnosis(12,13) and to assess disease progression and treatment effects at the network level(7,14-16). We present an example of the application of this methodology to FDG PET data of Parkinson's Disease patients and normal controls using our in-house software to derive a characteristic covariance pattern biomarker of disease.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Vicky完成签到 ,获得积分20
1秒前
kjz发布了新的文献求助10
1秒前
在水一方应助la采纳,获得10
1秒前
健壮的雁风完成签到 ,获得积分10
1秒前
acb完成签到,获得积分10
1秒前
xx完成签到,获得积分10
2秒前
3秒前
阳佟擎苍发布了新的文献求助20
3秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
搜集达人应助禾沐采纳,获得10
4秒前
4秒前
研友_LBKR9n完成签到,获得积分10
5秒前
孟湘琴发布了新的文献求助10
5秒前
遨游的人完成签到,获得积分10
5秒前
YXYWZMSZ完成签到,获得积分10
6秒前
6秒前
谷飞飞完成签到,获得积分10
6秒前
lily000完成签到,获得积分10
6秒前
6秒前
7秒前
月满西楼完成签到,获得积分10
7秒前
7秒前
4477完成签到,获得积分10
8秒前
8秒前
遨游的人发布了新的文献求助10
8秒前
张豪杰发布了新的文献求助10
8秒前
羽毛完成签到,获得积分20
10秒前
10秒前
胡图图完成签到,获得积分10
10秒前
10秒前
10秒前
沐羽珂发布了新的文献求助10
11秒前
11秒前
12秒前
12秒前
12秒前
Ava应助清爽的水蓝采纳,获得10
12秒前
隐形之玉完成签到,获得积分10
12秒前
elysia发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5068619
求助须知:如何正确求助?哪些是违规求助? 4290188
关于积分的说明 13366569
捐赠科研通 4109975
什么是DOI,文献DOI怎么找? 2250576
邀请新用户注册赠送积分活动 1255901
关于科研通互助平台的介绍 1188438