Identification of Disease-related Spatial Covariance Patterns using Neuroimaging Data

主成分分析 模式识别(心理学) 协方差 数学 体素 重采样 统计 数据集 人工智能 单变量 协方差分析 逻辑回归 多元统计 计算机科学
作者
Phoebe Spetsieris,Yilong Ma,Shichun Peng,Ji Hyun Ko,Vijay Dhawan,Chris C. Tang,David Eidelberg
出处
期刊:Journal of Visualized Experiments [MyJOVE]
卷期号: (76) 被引量:49
标识
DOI:10.3791/50319
摘要

The scaled subprofile model (SSM)(1-4) is a multivariate PCA-based algorithm that identifies major sources of variation in patient and control group brain image data while rejecting lesser components (Figure 1). Applied directly to voxel-by-voxel covariance data of steady-state multimodality images, an entire group image set can be reduced to a few significant linearly independent covariance patterns and corresponding subject scores. Each pattern, termed a group invariant subprofile (GIS), is an orthogonal principal component that represents a spatially distributed network of functionally interrelated brain regions. Large global mean scalar effects that can obscure smaller network-specific contributions are removed by the inherent logarithmic conversion and mean centering of the data(2,5,6). Subjects express each of these patterns to a variable degree represented by a simple scalar score that can correlate with independent clinical or psychometric descriptors(7,8). Using logistic regression analysis of subject scores (i.e. pattern expression values), linear coefficients can be derived to combine multiple principal components into single disease-related spatial covariance patterns, i.e. composite networks with improved discrimination of patients from healthy control subjects(5,6). Cross-validation within the derivation set can be performed using bootstrap resampling techniques(9). Forward validation is easily confirmed by direct score evaluation of the derived patterns in prospective datasets(10). Once validated, disease-related patterns can be used to score individual patients with respect to a fixed reference sample, often the set of healthy subjects that was used (with the disease group) in the original pattern derivation(11). These standardized values can in turn be used to assist in differential diagnosis(12,13) and to assess disease progression and treatment effects at the network level(7,14-16). We present an example of the application of this methodology to FDG PET data of Parkinson's Disease patients and normal controls using our in-house software to derive a characteristic covariance pattern biomarker of disease.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Kate完成签到,获得积分10
刚刚
刚刚
隐形曼青应助跳跃的太君采纳,获得10
刚刚
刚刚
虚心岂愈完成签到,获得积分10
1秒前
苹果丑发布了新的文献求助10
1秒前
ZZ完成签到,获得积分10
1秒前
1秒前
zy完成签到,获得积分10
1秒前
syr完成签到 ,获得积分10
1秒前
机智宛秋完成签到,获得积分10
1秒前
daggeraxe完成签到 ,获得积分10
2秒前
2秒前
喜文发布了新的文献求助10
2秒前
3秒前
3秒前
DR完成签到,获得积分10
4秒前
Juvenilesy完成签到,获得积分10
5秒前
5秒前
5秒前
5秒前
魔幻的向松完成签到,获得积分10
5秒前
繁星完成签到 ,获得积分10
6秒前
zy发布了新的文献求助10
6秒前
凤凰应助赵一采纳,获得50
6秒前
浮游应助struggle采纳,获得10
6秒前
6秒前
啊莲发布了新的文献求助10
7秒前
烟柳画桥完成签到,获得积分10
7秒前
研友_ZzReaZ发布了新的文献求助10
7秒前
英姑应助DueDue0327采纳,获得10
7秒前
研友_8RlQ2n完成签到,获得积分10
7秒前
田様应助SHEN采纳,获得10
8秒前
8秒前
wuhu完成签到,获得积分10
8秒前
YunjiangZhang发布了新的文献求助100
8秒前
汽水发布了新的文献求助10
8秒前
Zx_1993应助苏打采纳,获得10
9秒前
顾子墨完成签到,获得积分10
9秒前
高分求助中
美国药典 2000
Fermented Coffee Market 2000
合成生物食品制造技术导则,团体标准,编号:T/CITS 396-2025 1000
The Leucovorin Guide for Parents: Understanding Autism’s Folate 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Comparing natural with chemical additive production 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5239316
求助须知:如何正确求助?哪些是违规求助? 4406741
关于积分的说明 13715300
捐赠科研通 4275149
什么是DOI,文献DOI怎么找? 2345932
邀请新用户注册赠送积分活动 1343067
关于科研通互助平台的介绍 1301010