Ultra High-Precision Studies of Degradation Mechanisms in Aged LiCoO2/Graphite Li-Ion Cells

电解质 法拉第效率 泄流深度 电极 材料科学 电化学 锂(药物) 石墨 介电谱 离子 降级(电信) 容量损失 相间 化学 电池(电) 化学工程 分析化学(期刊) 复合材料 电气工程 色谱法 物理化学 内分泌学 工程类 生物 遗传学 功率(物理) 量子力学 医学 物理 有机化学
作者
Reza Fathi,J. C. Burns,David A. Stevens,Hui Ye,Chao Hu,Gaurav Jain,Erik R. Scott,Craig Schmidt,J. R. Dahn
出处
期刊:Journal of The Electrochemical Society [The Electrochemical Society]
卷期号:161 (10): A1572-A1579 被引量:56
标识
DOI:10.1149/2.0321410jes
摘要

Twenty LiCoO2/Graphite cells with ages between 0 and 12 years having different cycling histories but identical chemistry and construction were obtained from Medtronic Inc. These cells presented a unique opportunity to learn about aging mechanisms in Li-ion cells. The cells were studied using the ultra-high precision chargers (UHPC) at Dalhousie University, electrochemical impedance spectroscopy (EIS) and differential voltage versus capacity (dV/dQ vs Q) measurements. Even after 12 years of operation at 37°C, the cells still retained 80% of their initial capacity and their coulombic efficiency was 0.99985 when measured at C/20 and 40°C. The capacity loss of the aged cells could be explained by loss of lithium inventory through growth of the solid electrolyte interphase (SEI) at the negative electrode which led to impedance increase. There is no evidence of any active material loss due to electrical disconnect in these cells suggesting the cells have excellent electrodes. A low upper cutoff voltage (4.075 V) is crucial to the long lifetime of these cells due to electrolyte oxidation reactions at the positive electrode, revealed by the UHPC experiments. Comparing similar cells that were cycled to either 4.075 or 4.175 V showed that those cycled to higher voltages under the same conditions failed significantly sooner. These results suggest that electrolyte additives that reduce electrolyte oxidation at the positive electrode, will prolong the cycle and calendar life of these Li-ion cells.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
明理的天蓝完成签到,获得积分10
1秒前
咳咳发布了新的文献求助10
1秒前
木叶研完成签到,获得积分10
1秒前
无花果应助通~采纳,获得10
1秒前
2秒前
3秒前
周助发布了新的文献求助10
3秒前
伯赏秋白完成签到,获得积分10
3秒前
慕青应助sunzhiyu233采纳,获得10
3秒前
Sherwin完成签到,获得积分10
3秒前
羽毛完成签到,获得积分20
4秒前
xiongjian发布了新的文献求助10
4秒前
一方通行完成签到 ,获得积分10
4秒前
4秒前
monster0101完成签到 ,获得积分10
4秒前
5秒前
5秒前
6秒前
Stvn完成签到,获得积分20
6秒前
核桃发布了新的文献求助10
6秒前
跳跃的太阳完成签到,获得积分10
7秒前
7秒前
enoot完成签到,获得积分10
7秒前
dalin完成签到,获得积分10
7秒前
YE发布了新的文献求助10
7秒前
buno应助外向的沅采纳,获得10
7秒前
体贴啤酒发布了新的文献求助10
8秒前
花痴的谷雪完成签到,获得积分10
8秒前
8秒前
圈圈发布了新的文献求助10
8秒前
亮亮完成签到,获得积分10
8秒前
没有稗子完成签到 ,获得积分10
8秒前
科研小民工应助明亮的斩采纳,获得30
8秒前
9秒前
9秒前
小可发布了新的文献求助10
9秒前
莽哥完成签到,获得积分10
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740