Electroreduction of Carbon Dioxide to Hydrocarbons Using Bimetallic Cu–Pd Catalysts with Different Mixing Patterns

双金属片 催化作用 化学 混合(物理) 二氧化碳 碳纤维 化学工程 无机化学 有机化学 量子力学 复合数 物理 工程类 复合材料 材料科学
作者
Sichao Ma,Masaaki Sadakiyo,Minako Heima,Raymond Luo,Richard T. Haasch,Jake I. Gold,Miho Yamauchi,Paul J. A. Kenis
出处
期刊:Journal of the American Chemical Society [American Chemical Society]
卷期号:139 (1): 47-50 被引量:694
标识
DOI:10.1021/jacs.6b10740
摘要

Electrochemical conversion of CO2 holds promise for utilization of CO2 as a carbon feedstock and for storage of intermittent renewable energy. Presently Cu is the only metallic electrocatalyst known to reduce CO2 to appreciable amounts of hydrocarbons, but often a wide range of products such as CO, HCOO–, and H2 are formed as well. Better catalysts that exhibit high activity and especially high selectivity for specific products are needed. Here a range of bimetallic Cu–Pd catalysts with ordered, disordered, and phase-separated atomic arrangements (Cuat:Pdat = 1:1), as well as two additional disordered arrangements (Cu3Pd and CuPd3 with Cuat:Pdat = 3:1 and 1:3), are studied to determine key factors needed to achieve high selectivity for C1 or C2 chemicals in CO2 reduction. When compared with the disordered and phase-separated CuPd catalysts, the ordered CuPd catalyst exhibits the highest selectivity for C1 products (>80%). The phase-separated CuPd and Cu3Pd achieve higher selectivity (>60%) for C2 chemicals than CuPd3 and ordered CuPd, which suggests that the probability of dimerization of C1 intermediates is higher on surfaces with neighboring Cu atoms. Based on surface valence band spectra, geometric effects rather than electronic effects seem to be key in determining the selectivity of bimetallic Cu–Pd catalysts. These results imply that selectivities to different products can be tuned by geometric arrangements. This insight may benefit the design of catalytic surfaces that further improve activity and selectivity for CO2 reduction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
小蘑菇应助小汤圆采纳,获得10
3秒前
4秒前
5秒前
平常的伊发布了新的文献求助10
8秒前
8秒前
pangboo发布了新的文献求助10
12秒前
阿德利企鹅完成签到 ,获得积分10
13秒前
科研鲁宾孙完成签到,获得积分20
15秒前
athena关注了科研通微信公众号
15秒前
ning完成签到,获得积分10
16秒前
18秒前
20秒前
21秒前
小蘑菇应助柳易槐采纳,获得10
22秒前
Johnny0912完成签到,获得积分10
23秒前
赘婿应助玩家采纳,获得10
24秒前
24秒前
25秒前
25秒前
852应助ira采纳,获得10
28秒前
chitin chu完成签到,获得积分10
28秒前
28秒前
多多发布了新的文献求助10
29秒前
30秒前
32秒前
Akim应助诸岩采纳,获得10
32秒前
叶琳完成签到 ,获得积分10
33秒前
Bake完成签到,获得积分10
33秒前
freya发布了新的文献求助10
34秒前
35秒前
科研通AI2S应助111采纳,获得10
35秒前
五道口植树学院完成签到,获得积分20
36秒前
redamancy完成签到 ,获得积分10
38秒前
bierbia发布了新的文献求助10
39秒前
FashionBoy应助Bake采纳,获得10
39秒前
在水一方应助自觉的柜子采纳,获得10
40秒前
40秒前
41秒前
41秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136744
求助须知:如何正确求助?哪些是违规求助? 2787759
关于积分的说明 7783069
捐赠科研通 2443822
什么是DOI,文献DOI怎么找? 1299439
科研通“疑难数据库(出版商)”最低求助积分说明 625457
版权声明 600954