Superpixel-Based Difference Representation Learning for Change Detection in Multispectral Remote Sensing Images

多光谱图像 变更检测 计算机科学 人工智能 像素 特征提取 模式识别(心理学) 遥感 多光谱模式识别 人工神经网络 图像分辨率 特征(语言学) 分割 代表(政治) 计算机视觉 地理 法学 哲学 政治 语言学 政治学
作者
Maoguo Gong,Tao Zhan,Puzhao Zhang,Qiguang Miao
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:55 (5): 2658-2673 被引量:174
标识
DOI:10.1109/tgrs.2017.2650198
摘要

With the rapid technological development of various satellite sensors, high-resolution remotely sensed imagery has been an important source of data for change detection in land cover transition. However, it is still a challenging problem to effectively exploit the available spectral information to highlight changes. In this paper, we present a novel change detection framework for high-resolution remote sensing images, which incorporates superpixel-based change feature extraction and hierarchical difference representation learning by neural networks. First, highly homogenous and compact image superpixels are generated using superpixel segmentation, which makes these image blocks adhere well to image boundaries. Second, the change features are extracted to represent the difference information using spectrum, texture, and spatial features between the corresponding superpixels. Third, motivated by the fact that deep neural network has the ability to learn from data sets that have few labeled data, we use it to learn the semantic difference between the changed and unchanged pixels. The labeled data can be selected from the bitemporal multispectral images via a preclassification map generated in advance. And then, a neural network is built to learn the difference and classify the uncertain samples into changed or unchanged ones. Finally, a robust and high-contrast change detection result can be obtained from the network. The experimental results on the real data sets demonstrate its effectiveness, feasibility, and superiority of the proposed technique.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
AAA完成签到,获得积分10
刚刚
人生如梦应助等等采纳,获得10
2秒前
左囧发布了新的文献求助10
2秒前
2秒前
selena完成签到 ,获得积分10
3秒前
黄春容完成签到,获得积分10
3秒前
满满发布了新的文献求助10
3秒前
tuya发布了新的文献求助40
4秒前
4秒前
Hello应助Timezzz采纳,获得10
5秒前
wanci应助PSC采纳,获得10
5秒前
12138发布了新的文献求助10
7秒前
哈哈哈哈哈完成签到,获得积分10
7秒前
真实的亦竹完成签到,获得积分20
7秒前
JamesPei应助科研通管家采纳,获得10
7秒前
May应助科研通管家采纳,获得10
7秒前
吴垚应助科研通管家采纳,获得10
7秒前
852应助科研通管家采纳,获得10
7秒前
djiwisksk66应助木日采纳,获得10
8秒前
华仔应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
bkagyin应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
8秒前
pluto应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
大模型应助科研通管家采纳,获得10
8秒前
研友_nPxrVn发布了新的文献求助10
8秒前
典雅的鹤完成签到,获得积分20
9秒前
lalala应助ruann采纳,获得10
9秒前
李健的小迷弟应助Calvin采纳,获得10
10秒前
10秒前
11秒前
独特道消发布了新的文献求助30
12秒前
12秒前
左囧完成签到,获得积分10
13秒前
Coraline应助freedom313514采纳,获得20
13秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952072
求助须知:如何正确求助?哪些是违规求助? 3497487
关于积分的说明 11087843
捐赠科研通 3228126
什么是DOI,文献DOI怎么找? 1784700
邀请新用户注册赠送积分活动 868855
科研通“疑难数据库(出版商)”最低求助积分说明 801203