Superpixel-Based Difference Representation Learning for Change Detection in Multispectral Remote Sensing Images

多光谱图像 变更检测 计算机科学 人工智能 像素 特征提取 模式识别(心理学) 遥感 多光谱模式识别 人工神经网络 图像分辨率 特征(语言学) 分割 代表(政治) 计算机视觉 地理 法学 哲学 政治 语言学 政治学
作者
Maoguo Gong,Tao Zhan,Puzhao Zhang,Qiguang Miao
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:55 (5): 2658-2673 被引量:174
标识
DOI:10.1109/tgrs.2017.2650198
摘要

With the rapid technological development of various satellite sensors, high-resolution remotely sensed imagery has been an important source of data for change detection in land cover transition. However, it is still a challenging problem to effectively exploit the available spectral information to highlight changes. In this paper, we present a novel change detection framework for high-resolution remote sensing images, which incorporates superpixel-based change feature extraction and hierarchical difference representation learning by neural networks. First, highly homogenous and compact image superpixels are generated using superpixel segmentation, which makes these image blocks adhere well to image boundaries. Second, the change features are extracted to represent the difference information using spectrum, texture, and spatial features between the corresponding superpixels. Third, motivated by the fact that deep neural network has the ability to learn from data sets that have few labeled data, we use it to learn the semantic difference between the changed and unchanged pixels. The labeled data can be selected from the bitemporal multispectral images via a preclassification map generated in advance. And then, a neural network is built to learn the difference and classify the uncertain samples into changed or unchanged ones. Finally, a robust and high-contrast change detection result can be obtained from the network. The experimental results on the real data sets demonstrate its effectiveness, feasibility, and superiority of the proposed technique.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cozy111发布了新的文献求助10
1秒前
2秒前
小徐发布了新的文献求助10
2秒前
科研通AI6应助Zsx采纳,获得10
4秒前
5秒前
yajun完成签到,获得积分20
6秒前
丸子顺利毕业完成签到,获得积分10
6秒前
万能图书馆应助冷萃咖啡采纳,获得10
6秒前
BINGBING1230发布了新的文献求助10
6秒前
Akim应助苏幕遮采纳,获得10
6秒前
可爱的函函应助yfy采纳,获得10
7秒前
水草精完成签到,获得积分10
7秒前
谦让的友桃完成签到,获得积分10
7秒前
7秒前
认真乐安关注了科研通微信公众号
11秒前
12秒前
下雨的颜色完成签到,获得积分10
15秒前
15秒前
lcc完成签到,获得积分10
15秒前
hayek完成签到,获得积分10
17秒前
凌风子完成签到,获得积分10
18秒前
失眠雨双完成签到,获得积分10
18秒前
超级如风发布了新的文献求助10
18秒前
彭于晏应助cozy111采纳,获得10
19秒前
19秒前
天真苑睐完成签到,获得积分10
20秒前
huohuo发布了新的文献求助10
22秒前
CMD完成签到 ,获得积分10
25秒前
HanJinyu发布了新的文献求助30
25秒前
sun完成签到,获得积分10
25秒前
沉默的二娘完成签到,获得积分10
25秒前
26秒前
26秒前
lwj完成签到 ,获得积分20
27秒前
小徐完成签到,获得积分10
27秒前
YOLO完成签到 ,获得积分10
27秒前
慕青应助charint采纳,获得10
27秒前
27秒前
EASA完成签到,获得积分10
28秒前
LIU发布了新的文献求助10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5288966
求助须知:如何正确求助?哪些是违规求助? 4440796
关于积分的说明 13825631
捐赠科研通 4323077
什么是DOI,文献DOI怎么找? 2372945
邀请新用户注册赠送积分活动 1368399
关于科研通互助平台的介绍 1332283