亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Superpixel-Based Difference Representation Learning for Change Detection in Multispectral Remote Sensing Images

多光谱图像 变更检测 计算机科学 人工智能 像素 特征提取 模式识别(心理学) 遥感 多光谱模式识别 人工神经网络 图像分辨率 特征(语言学) 分割 代表(政治) 计算机视觉 地理 法学 哲学 政治 语言学 政治学
作者
Maoguo Gong,Tao Zhan,Puzhao Zhang,Qiguang Miao
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:55 (5): 2658-2673 被引量:174
标识
DOI:10.1109/tgrs.2017.2650198
摘要

With the rapid technological development of various satellite sensors, high-resolution remotely sensed imagery has been an important source of data for change detection in land cover transition. However, it is still a challenging problem to effectively exploit the available spectral information to highlight changes. In this paper, we present a novel change detection framework for high-resolution remote sensing images, which incorporates superpixel-based change feature extraction and hierarchical difference representation learning by neural networks. First, highly homogenous and compact image superpixels are generated using superpixel segmentation, which makes these image blocks adhere well to image boundaries. Second, the change features are extracted to represent the difference information using spectrum, texture, and spatial features between the corresponding superpixels. Third, motivated by the fact that deep neural network has the ability to learn from data sets that have few labeled data, we use it to learn the semantic difference between the changed and unchanged pixels. The labeled data can be selected from the bitemporal multispectral images via a preclassification map generated in advance. And then, a neural network is built to learn the difference and classify the uncertain samples into changed or unchanged ones. Finally, a robust and high-contrast change detection result can be obtained from the network. The experimental results on the real data sets demonstrate its effectiveness, feasibility, and superiority of the proposed technique.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
tabblk发布了新的文献求助10
11秒前
赘婿应助科研通管家采纳,获得10
33秒前
QCB完成签到 ,获得积分10
50秒前
陈杰发布了新的文献求助10
53秒前
宋艳芳完成签到,获得积分10
1分钟前
陈杰完成签到,获得积分10
1分钟前
传奇3应助蒙豆儿采纳,获得10
2分钟前
2分钟前
蒙豆儿发布了新的文献求助10
2分钟前
汉堡包应助科研通管家采纳,获得10
2分钟前
乐乐应助科研通管家采纳,获得10
2分钟前
2分钟前
4分钟前
fsznc1完成签到 ,获得积分0
4分钟前
情怀应助孙孙采纳,获得10
4分钟前
滕皓轩完成签到 ,获得积分20
5分钟前
5分钟前
孙孙发布了新的文献求助10
5分钟前
彭于晏应助蒙豆儿采纳,获得30
5分钟前
6分钟前
蒙豆儿发布了新的文献求助30
6分钟前
依然灬聆听完成签到,获得积分10
6分钟前
Z可完成签到,获得积分10
6分钟前
科研通AI2S应助pxy采纳,获得10
6分钟前
orixero应助袁青寒采纳,获得10
7分钟前
7分钟前
8分钟前
英姑应助科研通管家采纳,获得10
8分钟前
10分钟前
嘻嘻完成签到,获得积分10
10分钟前
abc完成签到 ,获得积分10
10分钟前
lixuebin完成签到 ,获得积分10
12分钟前
NexusExplorer应助狂奔弟弟采纳,获得10
12分钟前
12分钟前
狂奔弟弟发布了新的文献求助10
12分钟前
狂奔弟弟完成签到,获得积分10
12分钟前
a61完成签到,获得积分10
12分钟前
13分钟前
zsc发布了新的文献求助10
13分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4582317
求助须知:如何正确求助?哪些是违规求助? 4000095
关于积分的说明 12382127
捐赠科研通 3674975
什么是DOI,文献DOI怎么找? 2025631
邀请新用户注册赠送积分活动 1059307
科研通“疑难数据库(出版商)”最低求助积分说明 945946