Superpixel-Based Difference Representation Learning for Change Detection in Multispectral Remote Sensing Images

多光谱图像 变更检测 计算机科学 人工智能 像素 特征提取 模式识别(心理学) 遥感 多光谱模式识别 人工神经网络 图像分辨率 特征(语言学) 分割 代表(政治) 计算机视觉 地理 法学 哲学 政治 语言学 政治学
作者
Maoguo Gong,Tao Zhan,Puzhao Zhang,Qiguang Miao
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:55 (5): 2658-2673 被引量:174
标识
DOI:10.1109/tgrs.2017.2650198
摘要

With the rapid technological development of various satellite sensors, high-resolution remotely sensed imagery has been an important source of data for change detection in land cover transition. However, it is still a challenging problem to effectively exploit the available spectral information to highlight changes. In this paper, we present a novel change detection framework for high-resolution remote sensing images, which incorporates superpixel-based change feature extraction and hierarchical difference representation learning by neural networks. First, highly homogenous and compact image superpixels are generated using superpixel segmentation, which makes these image blocks adhere well to image boundaries. Second, the change features are extracted to represent the difference information using spectrum, texture, and spatial features between the corresponding superpixels. Third, motivated by the fact that deep neural network has the ability to learn from data sets that have few labeled data, we use it to learn the semantic difference between the changed and unchanged pixels. The labeled data can be selected from the bitemporal multispectral images via a preclassification map generated in advance. And then, a neural network is built to learn the difference and classify the uncertain samples into changed or unchanged ones. Finally, a robust and high-contrast change detection result can be obtained from the network. The experimental results on the real data sets demonstrate its effectiveness, feasibility, and superiority of the proposed technique.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
liam完成签到,获得积分10
刚刚
Jane完成签到 ,获得积分10
刚刚
1秒前
希望天下0贩的0应助容止采纳,获得10
2秒前
纪智勇发布了新的文献求助10
2秒前
坦率的海豚完成签到,获得积分10
2秒前
xiang完成签到,获得积分10
4秒前
6lllpp发布了新的文献求助10
4秒前
疯癫科研人完成签到,获得积分10
4秒前
4秒前
Dorren发布了新的文献求助10
4秒前
慕青应助Lee采纳,获得10
5秒前
852应助小雪花采纳,获得10
7秒前
无花果应助别摆烂了采纳,获得10
7秒前
思源应助别摆烂了采纳,获得10
7秒前
共享精神应助别摆烂了采纳,获得10
7秒前
缥缈老九完成签到,获得积分10
7秒前
li发布了新的文献求助10
8秒前
龙彦完成签到,获得积分10
8秒前
wellbeing完成签到,获得积分10
8秒前
MO完成签到,获得积分10
8秒前
121311发布了新的文献求助10
8秒前
脑洞疼应助carbonhan采纳,获得10
8秒前
在水一方应助一小盆芦荟采纳,获得10
10秒前
乐乐应助Eternity2025采纳,获得10
11秒前
6lllpp完成签到,获得积分10
13秒前
13秒前
13秒前
星际完成签到,获得积分10
14秒前
CodeCraft应助Pawn采纳,获得10
14秒前
wanci应助33采纳,获得10
14秒前
15秒前
15秒前
NiuNiu完成签到,获得积分20
15秒前
大意完成签到,获得积分10
17秒前
术师发布了新的文献求助400
17秒前
科研通AI5应助121311采纳,获得10
17秒前
佳佳发布了新的文献求助10
18秒前
ding应助叮当采纳,获得10
22秒前
kane完成签到,获得积分10
22秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5215500
求助须知:如何正确求助?哪些是违规求助? 4390616
关于积分的说明 13670382
捐赠科研通 4252539
什么是DOI,文献DOI怎么找? 2333148
邀请新用户注册赠送积分活动 1330741
关于科研通互助平台的介绍 1284568