Study of Capacity Retention of Mcmb Anode Using Various Nanostructured Conductive Additives

材料科学 阳极 炭黑 导电体 纳米技术 电导率 石墨烯 锂(药物) 电极 化学工程 复合材料 内分泌学 物理化学 工程类 天然橡胶 化学 医学
作者
Salahuddin Ahamad,Amit Gupta
出处
期刊:Meeting abstracts 卷期号:MA2017-01 (7): 583-583
标识
DOI:10.1149/ma2017-01/7/583
摘要

The global lithium-ion battery industry is growing at an impressive rate and is expected to grow even further in the near future. The main reasons for this are the high energy density and excellent cycling performance that these batteries exhibit. Researchers are experimenting with a handful of ideas that could make batteries vastly better than they are today, which could lead to more affordable electric cars and cheaper ways to store the intermittent energy 1 . The use of lithium-ion batteries (LIBs) in the automotive sector has been receiving quite significant attention. However, limitation of low electronic conductivity of electrodes has prohibited rapid commercialization of LIBs for automotive applications (such as EVs, HEVs, PHEVs, etc.) where high power density is required 2 . In addition, the lower electronic conductivity of active materials makes it difficult to achieve their theoretical capacities at implementation. A number of methods, such as surface coating with conductive material 3 , lattice doping 4 , addition of metallic particles (copper and nickel) 5 were adopted to improve the conductivity of active materials with reasonable success. In this work, we examine the capacity retention characteristics of mesocarbon microbeads (MCMB) by the use of various nanostructure conductive additives such as carbon black (CB), multiwalled carbon nanotubes (MWCNTs) and graphene in a CR2016 type coin. Figure 1(a) shows the plot of electrical conductivity of MCMB anode with various proportion of CB and CNT. For the purpose of meaningful comparison, the weight percent of conducting agent in MCMB with CB, MCMB with CB and CNT, and MCMB with CNT composite anode remains the same. When some content of CB is replaced by CNT, electrical conductivity improves because of formation of hybrid conductive that meets both the long-range and short-range conduction requirement. In Figure 1(b) the experimental cycling behaviour for discharge capacity of MCMB-4 wt.% CB and MCMB-(3 wt.% CB+1 wt.% CNT) anode at 1C and 4C rate for first 50 cycles are compared and the effect of composite anodes with hybrid conductive network at 1C rate show 348 mAhg -1 capacity for initial cycle whereas electrodes with CB as additive exhibit about 337 mAhg -1 . The MCMB-(CB+CNT) anode exhibits almost 99% capacity retention while MCMB-CB display the capacity retention of 92.6% after 50 cycles at 1C rate. Similarly, at 4C rate the initial capacity and capacity retention for mix conductive additives are superior as shown in Figure 1(b). The improvement of capacity retention performance is mainly because of improved electrical conductivity on addition of CNT due to their higher conductivity and high aspect ratio in comparison to CB. The cycling performance of MCMB anode with graphene as conductive additive will also be presented. Electrochemical impedance spectroscopy (EIS) will be employed to analyze the aging effects and rate of capacity degradation of cells by quantifying the growth of internal resistances with cycling. The morphological and structural changes of electrodes due to cycling will be examined by characterization at fresh and cycled stages. Reference [1] H. Y. Tran, G. Greco, C. Täubert, M. W. Mehrens, W. Haselrieder, A. Kwade, “Influence of electrode preparation on the electrochemical performance of LiNi 0.8 Co 0.15 Al 0.05 O 2 composite electrodes for lithium-ion batteries” J. Power Sources 210 (2012) 276. [2] S. E. Cheon, C. W. Kwon, D. B. Kim, S. J. Hong, H. T. Kim, S. W. Kim, “Effect of binary conductive agents in LiCoO 2 cathode on performances of lithium ion polymer battery” Electrochim. Acta 46 (2000) 599. [3] H. Momose, H. Honbo, S. Takeuchi, K. Nishimura, T. Horiba, Y. Muranaka, Y. Kozono, H. Miyadera, “X-ray photoelectron spectroscopy analyses of lithium intercalation and alloying reactions on graphite electrodes” J. Power Sources 68 (1997) 208. [4] Y. P. Wu, E. Rahm, R. Holze, “Effects of heteroatoms on electrochemical performance of electrode materials for lithium ion batteries” Electrochim. Acta 47 (2002) 3491. [5] F. Joho, B. Rykart, R. Imhof, P. Novak, M. E. Spahr, A. Monnier, “Key factors for the cycling stability of graphite intercalation electrodes for lithium-ion batteries”. J. Power Sources 81 (1999) 243. Figure 1

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助halona采纳,获得10
刚刚
刚刚
1秒前
踏实的大地完成签到,获得积分10
1秒前
1秒前
Sunnpy发布了新的文献求助10
1秒前
1秒前
在水一方应助苇一采纳,获得10
2秒前
奥特曼完成签到,获得积分10
2秒前
Singularity应助周星星采纳,获得10
3秒前
3秒前
果果发布了新的文献求助10
3秒前
3秒前
淡定的傲玉完成签到 ,获得积分10
5秒前
5秒前
bolin完成签到,获得积分10
6秒前
知度发布了新的文献求助10
6秒前
7秒前
LuoYR@SZU发布了新的文献求助10
7秒前
彭彭发布了新的文献求助10
7秒前
7秒前
苏苏完成签到,获得积分10
7秒前
舒心丹亦完成签到,获得积分10
8秒前
雷予完成签到,获得积分10
8秒前
赵哥发布了新的文献求助10
8秒前
8秒前
李李驳回了Hello应助
9秒前
诗与发布了新的文献求助30
9秒前
baekhyun发布了新的文献求助10
10秒前
11秒前
不配.应助顺利梦菡采纳,获得10
11秒前
刘珊妹完成签到,获得积分10
11秒前
华仔应助健康的幻珊采纳,获得30
12秒前
冯志华发布了新的文献求助10
12秒前
小海完成签到,获得积分10
12秒前
认真平蝶完成签到 ,获得积分10
13秒前
13秒前
14秒前
Lucas应助LuoYR@SZU采纳,获得10
14秒前
14秒前
高分求助中
Shape Determination of Large Sedimental Rock Fragments 2000
Sustainability in Tides Chemistry 2000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3129146
求助须知:如何正确求助?哪些是违规求助? 2779966
关于积分的说明 7745595
捐赠科研通 2435160
什么是DOI,文献DOI怎么找? 1293933
科研通“疑难数据库(出版商)”最低求助积分说明 623474
版权声明 600542