A Unified Approach to Interpreting Model Predictions

可解释性 统一 机器学习 班级(哲学) 人工智能 直觉 一致性(知识库) 夏普里值 统一模型 计算机科学 特征(语言学) 数学 博弈论 哲学 语言学 物理 数理经济学 认识论 气象学 程序设计语言
作者
Scott Lundberg,Su‐In Lee
出处
期刊:Cornell University - arXiv 被引量:1116
摘要

Understanding why a model makes a certain prediction can be as crucial as the prediction's accuracy in many applications. However, the highest accuracy for large modern datasets is often achieved by complex models that even experts struggle to interpret, such as ensemble or deep learning models, creating a tension between accuracy and interpretability. In response, various methods have recently been proposed to help users interpret the predictions of complex models, but it is often unclear how these methods are related and when one method is preferable over another. To address this problem, we present a unified framework for interpreting predictions, SHAP (SHapley Additive exPlanations). SHAP assigns each feature an importance value for a particular prediction. Its novel components include: (1) the identification of a new class of additive feature importance measures, and (2) theoretical results showing there is a unique solution in this class with a set of desirable properties. The new class unifies six existing methods, notable because several recent methods in the class lack the proposed desirable properties. Based on insights from this unification, we present new methods that show improved computational performance and/or better consistency with human intuition than previous approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiaoming完成签到,获得积分10
1秒前
噗噗完成签到,获得积分20
1秒前
2秒前
DY发布了新的文献求助10
2秒前
3秒前
传奇3应助丰富的硬币采纳,获得10
4秒前
在水一方应助害怕的小之采纳,获得10
4秒前
whatever应助晚霞满天采纳,获得20
5秒前
5秒前
5秒前
6秒前
6秒前
yylyh完成签到,获得积分10
6秒前
彭于晏应助禾平采纳,获得30
6秒前
橘子完成签到,获得积分10
7秒前
脑洞疼应助生技BT采纳,获得10
7秒前
刘屿柠发布了新的文献求助10
8秒前
阳光的道消完成签到,获得积分10
8秒前
Owen应助pb采纳,获得10
8秒前
科研通AI2S应助c123采纳,获得10
9秒前
隔壁老吴发布了新的文献求助10
11秒前
活力听兰发布了新的文献求助10
11秒前
噜噜噜发布了新的文献求助30
11秒前
11秒前
fang完成签到 ,获得积分10
12秒前
12秒前
袁袁发布了新的文献求助30
12秒前
12秒前
传奇3应助优美的背包采纳,获得10
13秒前
汉堡包应助shanjianjie采纳,获得10
14秒前
14秒前
sun完成签到,获得积分10
14秒前
Li完成签到,获得积分10
15秒前
TALE发布了新的文献求助10
15秒前
October完成签到,获得积分10
15秒前
15秒前
勤奋思思完成签到 ,获得积分10
16秒前
16秒前
仿真小学生应助动听访文采纳,获得10
16秒前
jia0发布了新的文献求助10
16秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3226519
求助须知:如何正确求助?哪些是违规求助? 2874843
关于积分的说明 8188434
捐赠科研通 2541892
什么是DOI,文献DOI怎么找? 1372438
科研通“疑难数据库(出版商)”最低求助积分说明 646461
邀请新用户注册赠送积分活动 620819