Double rare-earth nanothermometer in aqueous media: opening the third optical transparency window to temperature sensing

材料科学 纳米颗粒 光致发光 纳米技术 纳米探针 光电子学 纳米尺度 激发 波长 电气工程 工程类
作者
Artiom Skripka,Antonio Benayas,Riccardo Marin,Patrizia Canton,Eva Hemmer,Fiorenzo Vetrone
出处
期刊:Nanoscale [The Royal Society of Chemistry]
卷期号:9 (9): 3079-3085 被引量:161
标识
DOI:10.1039/c6nr08472a
摘要

Owing to the alluring possibility of contactless temperature probing with microscopic spatial resolution, photoluminescence nanothermometry at the nanoscale is rapidly advancing towards its successful application in biomedical sciences. The emergence of near-infrared nanothermometers has paved the way for temperature sensing at the deep tissue level. However, water dispersibility, adequate size at the nanoscale, and the capability to efficiently operate in the second and third biological optical transparency windows are the requirements that still have to be fulfilled in a single nanoprobe. In this work, these requirements are addressed by rare-earth doped nanoparticles with core/shell-architecture, dispersed in water, whose excitation and emission wavelengths conveniently fall within the biological optical transparency windows. Under heating-free 800 nm excitation, double nanothermometry is realized either with Ho3+–Nd3+ (1.18–1.34 μm) or Er3+–Nd3+ (1.55–1.34 μm) NIR emission band ratios, both displaying equal thermal sensitivities around 1.1% °C−1. It is further demonstrated that, along with the interionic energy transfer processes, the thermometric properties of these nanoparticles are also governed by the temperature dependent energy transfer to the surrounding solvent (water) molecules. Overall, this work presents a novel water dispersible double ratiometric nanothermometer operating in the second and third biological optical transparency windows. The temperature dependent particle–solvent interaction is also presented, which is critical for e.g. future in vivo applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
TNNTDS完成签到,获得积分20
刚刚
CMC发布了新的文献求助10
刚刚
lida发布了新的文献求助10
2秒前
2秒前
3秒前
DYZ发布了新的文献求助10
5秒前
5秒前
6秒前
6秒前
皮皮发布了新的文献求助10
6秒前
7秒前
7秒前
英姑应助ihuhiu采纳,获得10
9秒前
ZQ发布了新的文献求助10
9秒前
10秒前
yqx发布了新的文献求助10
11秒前
文字头-D完成签到,获得积分10
11秒前
琦琦发布了新的文献求助10
12秒前
12秒前
13秒前
耿舒婷完成签到,获得积分10
13秒前
15秒前
Cassiel发布了新的文献求助30
15秒前
16秒前
17秒前
green发布了新的文献求助30
17秒前
18秒前
18秒前
chenhy发布了新的文献求助30
18秒前
18秒前
20秒前
领导范儿应助yqx采纳,获得10
20秒前
21秒前
vivi完成签到,获得积分10
22秒前
科研通AI5应助De_Frank123采纳,获得10
22秒前
小李发布了新的文献求助10
22秒前
泯珉发布了新的文献求助10
23秒前
心内小白发布了新的文献求助10
24秒前
小马甲应助ZQ采纳,获得10
24秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
1.3μm GaAs基InAs量子点材料生长及器件应用 1000
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3526144
求助须知:如何正确求助?哪些是违规求助? 3106527
关于积分的说明 9280744
捐赠科研通 2804127
什么是DOI,文献DOI怎么找? 1539278
邀请新用户注册赠送积分活动 716514
科研通“疑难数据库(出版商)”最低求助积分说明 709495