吸引子
非线性系统
数学分析
紧凑空间
数学
边界(拓扑)
空格(标点符号)
波动方程
边值问题
Dirichlet边界条件
物理
数学物理
量子力学
计算机科学
操作系统
作者
Fengjuan Meng,Meihua Yang,Chengkui Zhong
出处
期刊:Discrete and Continuous Dynamical Systems-series B
[American Institute of Mathematical Sciences]
日期:2015-11-01
卷期号:21 (1): 205-225
被引量:31
标识
DOI:10.3934/dcdsb.2016.21.205
摘要
In this paper, we consider the long time behavior of the solution for the following nonlinear damped wave equation\begin{eqnarray*}\varepsilon(t) u_{tt}+g(u_{t})-\Delta u+\varphi (u)=f \end{eqnarray*} with Dirichlet boundary condition, in which, the coefficient $\varepsilon$ depends explicitly on time, the damping $g$ is nonlinear and the nonlinearity $\varphi$ has a critical growth. Spirited by this concrete problem, we establish a sufficient and necessary condition for the existence of attractors on time-dependent spaces, which is equivalent to that provided by M. Conti et al.[10]. Furthermore, we give a technical method for verifying compactness of the process via contractive functions.Finally, by the new framework, we obtain the existence of thetime-dependent attractors for the wave equations with nonlinear damping.
科研通智能强力驱动
Strongly Powered by AbleSci AI