Plasma formation in diode pumped alkali lasers sustained in Cs

激光阈值 激光器 原子物理学 二极管 等离子体 化学 激发 碱金属 光抽运 材料科学 光电子学 光学 物理 量子力学 有机化学
作者
Aram Markosyan,Mark J. Kushner
出处
期刊:Journal of Applied Physics [American Institute of Physics]
卷期号:120 (19) 被引量:9
标识
DOI:10.1063/1.4967749
摘要

In diode pumped alkali lasers (DPALs), lasing action occurs on the resonant lines of alkali atoms following pumping by broadband semiconductor lasers. The goal is to convert the efficient but usually poor optical quality of inexpensive diode lasers into the high optical quality of atomic vapor lasers. Resonant excitation of alkali vapor leads to plasma formation through the excitation transfer from the 2P states to upper lying states, which then are photoionized by the pump and intracavity radiation. A first principles global model was developed to investigate the operation of the He/Cs DPAL system and the consequences of plasma formation on the efficiency of the laser. Over a range of pump powers, cell temperatures, excitation frequency, and mole fraction of the collision mixing agent (N2 or C2H6), we found that sufficient plasma formation can occur that the Cs vapor is depleted. Although N2 is not a favored collisional mixing agent due to large rates of quenching of the 2P states, we found a range of pump parameters where laser oscillation may occur. The poor performance of N2 buffered systems may be explained in part by plasma formation. We found that during the operation of the DPAL system with N2 as the collisional mixing agent, plasma formation is in excess of 1014–1015 cm−3, which can degrade laser output intensity by both depletion of the neutral vapor and electron collisional mixing of the laser levels.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
柏忆南完成签到 ,获得积分10
刚刚
li发布了新的文献求助10
刚刚
dldddz发布了新的文献求助10
刚刚
jimmy完成签到,获得积分10
刚刚
田様应助侦察兵采纳,获得10
刚刚
鑫渊完成签到,获得积分10
刚刚
天冷了hhhdh完成签到,获得积分10
1秒前
ting完成签到,获得积分10
1秒前
微笑完成签到,获得积分10
1秒前
可爱的函函应助西宁阿采纳,获得30
2秒前
蓝莓松饼发布了新的文献求助10
2秒前
3秒前
哈哈发布了新的文献求助10
3秒前
高高发布了新的文献求助10
3秒前
一拳一个小欧阳完成签到 ,获得积分10
3秒前
明雨天地完成签到,获得积分10
3秒前
deathmask完成签到 ,获得积分10
3秒前
老实志泽完成签到,获得积分20
4秒前
4秒前
4秒前
4秒前
hata完成签到,获得积分10
4秒前
Pangsj完成签到,获得积分10
5秒前
5秒前
青蛙旅行完成签到 ,获得积分10
5秒前
FashionBoy应助科研通管家采纳,获得10
5秒前
小蘑菇应助科研通管家采纳,获得10
5秒前
小马甲应助科研通管家采纳,获得10
5秒前
Orange应助科研通管家采纳,获得10
6秒前
小马甲应助mimi采纳,获得10
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
英姑应助科研通管家采纳,获得10
6秒前
雪白问兰应助科研通管家采纳,获得30
6秒前
汉堡包应助科研通管家采纳,获得10
6秒前
zzzzzz应助科研通管家采纳,获得20
6秒前
6秒前
爆米花应助科研通管家采纳,获得10
6秒前
sidegate应助科研通管家采纳,获得10
6秒前
prosperp应助科研通管家采纳,获得10
6秒前
香蕉觅云应助科研通管家采纳,获得10
6秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672