集中太阳能
热能储存
工艺工程
按来源划分的电力成本
发电站
环境科学
太阳能
核工程
太阳能
计算机科学
机械工程
汽车工程
发电
功率(物理)
工程类
电气工程
物理
量子力学
热力学
作者
Muhammad Sarfraz,Ryan Shun-Cheung Yeung,Kenzo Repole,Matthew Golob,Sheldon Jeter,Hany Al-Ansary,Abdelrahman El–Leathy,Shaker Alaqel,Nader S. Saleh,Rageh S. Saeed,Abdulelah Alswaiyd
摘要
Abstract Particle heating receiver (PHR) based concentrating solar power (CSP) is widely recognized as the preferred path to reliable and cost-effective solar power. Use of solid particles rather than conventional fluids such as molten salts as collection and storage media, enables the operation of the PHR-based CSP plant at elevated temperatures (∼1000°C). This advantage leads to higher efficiency and lower levelized cost of energy (LCOE) produced by PHR-based CSP plants. However, designing and integrating the commercial solar power plant at high operating temperatures (∼1000°C), is a substantial challenge which has been overcome. Our research teams at King Saud University (KSU) and the Georgia Institute of Technology (GIT) have been working on the design and development of high temperature key sub-systems in PHR-based CSP plants. The proposed 1.3 MWe pre-commercial demonstration (PPCD) plant will incorporate the design evolved from our risk-reducing research activities performed at 300kW test facility at KSU and GIT. The DS-PHR of the PPCD will incorporate the KSU’s patented discrete-structured design in which the receiver will be enclosed in a cavity to minimize radiative and convective heat losses. Each PHR panel will have efficient particle flow control system for uniform particles outlet temperatures. Low-cost particulate materials with enhanced solar absorptance and resilience at high-temperatures have been identified to be used as heat collection and storage media. Inexpensive thermal energy storage (TES) bins will accommodate sand with temperatures ∼ 1000 °C. Multiple layered design of the TES bins will limit the heat loss to less than 1% per day (at scale). The current TES design allows easy access to the high-temperature bins for experimental observation and for future modifications. A patent pending skip hoist particle lift system design will be used for particle conveyance with expected mechanical efficiency of 75–85 %. Our lift design is simple, demonstrates autonomous operation with minimal mechanical complexity, minimized heat loss, and reduced maintenance. The heat exchanger proposed is a multi-pass shell-tubes design with high heat transfer coefficient. The design features discussed in this paper will lead to large scale commercial plants and similar small-scale designs for off-grid and remote applications at our anticipated service location which is in Saudi Arabia, and in Mideast and North Africa (MENA) region.
科研通智能强力驱动
Strongly Powered by AbleSci AI