Representation learning using Attention Network and CNN for Heterogeneous networks

计算机科学 代表(政治) 人工智能 特征学习 机器学习 理论计算机科学 政治学 政治 法学
作者
Ning Tong,Ying Tang,Bo Chen,Lirong Xiong
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:185: 115628-115628 被引量:16
标识
DOI:10.1016/j.eswa.2021.115628
摘要

Network embedding (NE), also known as network representation learning (NRL), is a method to learn a low-dimensional latent representation of nodes in an information network. The real-world data is usually presented in the form of heterogeneous information network (HIN) with multiple types of nodes and edges. Because of the rich information in HINs, it is necessary for a network embedding method to incorporate this information into the low-dimensional potential representation of the nodes as much as possible. In this paper, we propose a semi-supervised representation learning model using a graph attention network and a convolutional neural network (CNN) for HINs, called RANCH. In the part of the graph attention network, we construct a heterogeneous graph attention network using heterogeneous edges to preserve the features of nodes and the structure of network. In the part of the CNN, we leverage a 1D-CNN sentence classification model from natural language processing (NLP) community by adopting edge-constrained truncated random walks to generate node sequences, which can be treated as a corpus of words and sentences. The latter part further integrates the structural information of the network on the basis of the previous part and strengthens the influence of the node’s label information on the node representation. We have performed experiments of node classification on three real-world datasets, and the result shows that our model performs better than the state-of-the-arts. • A network embedding method for heterogeneous information network is proposed. • Most network embedding methods require the use of meta-paths for semantic learning. • The semantic information is learned by multi-typed edges without meta-paths here. • The embeddings of all types of nodes in the network are learned at the same time. • Our model performs better in node classification than most state-of-the-art methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
mmm完成签到,获得积分20
刚刚
1秒前
东郭南珍发布了新的文献求助10
1秒前
吴五五完成签到,获得积分10
1秒前
脑袋空空完成签到,获得积分10
1秒前
天问完成签到,获得积分10
1秒前
项脊轩发布了新的文献求助30
1秒前
惜曦完成签到 ,获得积分10
2秒前
直率的皮带完成签到,获得积分10
2秒前
八九完成签到,获得积分10
2秒前
义气的乐曲完成签到,获得积分10
3秒前
3秒前
mumian完成签到 ,获得积分10
3秒前
王艺霖发布了新的文献求助10
3秒前
4秒前
4秒前
tonyguo完成签到,获得积分10
4秒前
无水乙醚完成签到,获得积分10
5秒前
5秒前
pb完成签到,获得积分10
5秒前
Keira完成签到,获得积分10
5秒前
123完成签到,获得积分10
5秒前
6秒前
YHY发布了新的文献求助10
6秒前
风中青亦给风中青亦的求助进行了留言
6秒前
yunfulu29完成签到,获得积分10
6秒前
6秒前
lvzhigang完成签到,获得积分10
6秒前
水泥发布了新的文献求助10
7秒前
大个应助Ashuno采纳,获得10
7秒前
7秒前
tonyguo发布了新的文献求助10
7秒前
执着以彤完成签到 ,获得积分10
8秒前
haoyooo完成签到,获得积分10
8秒前
研友_8RlQ2n完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助10
9秒前
BowieHuang应助伍新采纳,获得10
10秒前
橙浅完成签到,获得积分10
10秒前
Hx完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
A Practical Introduction to Regression Discontinuity Designs 2000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5658821
求助须知:如何正确求助?哪些是违规求助? 4824516
关于积分的说明 15083291
捐赠科研通 4817352
什么是DOI,文献DOI怎么找? 2578137
邀请新用户注册赠送积分活动 1532856
关于科研通互助平台的介绍 1491634