Representation learning using Attention Network and CNN for Heterogeneous networks

计算机科学 代表(政治) 人工智能 特征学习 机器学习 理论计算机科学 政治学 政治 法学
作者
Ning Tong,Ying Tang,Bo Chen,Lirong Xiong
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:185: 115628-115628 被引量:16
标识
DOI:10.1016/j.eswa.2021.115628
摘要

Network embedding (NE), also known as network representation learning (NRL), is a method to learn a low-dimensional latent representation of nodes in an information network. The real-world data is usually presented in the form of heterogeneous information network (HIN) with multiple types of nodes and edges. Because of the rich information in HINs, it is necessary for a network embedding method to incorporate this information into the low-dimensional potential representation of the nodes as much as possible. In this paper, we propose a semi-supervised representation learning model using a graph attention network and a convolutional neural network (CNN) for HINs, called RANCH. In the part of the graph attention network, we construct a heterogeneous graph attention network using heterogeneous edges to preserve the features of nodes and the structure of network. In the part of the CNN, we leverage a 1D-CNN sentence classification model from natural language processing (NLP) community by adopting edge-constrained truncated random walks to generate node sequences, which can be treated as a corpus of words and sentences. The latter part further integrates the structural information of the network on the basis of the previous part and strengthens the influence of the node’s label information on the node representation. We have performed experiments of node classification on three real-world datasets, and the result shows that our model performs better than the state-of-the-arts. • A network embedding method for heterogeneous information network is proposed. • Most network embedding methods require the use of meta-paths for semantic learning. • The semantic information is learned by multi-typed edges without meta-paths here. • The embeddings of all types of nodes in the network are learned at the same time. • Our model performs better in node classification than most state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
聪明的鹤完成签到 ,获得积分10
刚刚
大个应助liulongchao采纳,获得10
1秒前
2秒前
5秒前
jagger完成签到,获得积分10
5秒前
畅快的如松完成签到,获得积分10
6秒前
慕青应助celety采纳,获得10
7秒前
丘比特应助hyq26采纳,获得10
7秒前
7秒前
赘婿应助科研通管家采纳,获得10
8秒前
ding应助科研通管家采纳,获得10
8秒前
Lucas应助科研通管家采纳,获得10
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
Lucas应助科研通管家采纳,获得10
8秒前
Singularity应助科研通管家采纳,获得10
8秒前
慕青应助GuSiwen采纳,获得10
8秒前
852应助科研通管家采纳,获得10
8秒前
科研通AI2S应助科研通管家采纳,获得50
8秒前
苏卿应助科研通管家采纳,获得10
8秒前
共享精神应助科研通管家采纳,获得10
8秒前
彭于晏应助科研通管家采纳,获得10
8秒前
深情安青应助科研通管家采纳,获得10
8秒前
8秒前
9秒前
9秒前
9秒前
9秒前
无聊的完成签到,获得积分10
10秒前
听话的靖柏完成签到 ,获得积分10
11秒前
11秒前
H0neYvia完成签到 ,获得积分10
11秒前
12秒前
liulongchao发布了新的文献求助10
14秒前
14秒前
yesss完成签到 ,获得积分10
15秒前
神勇的薯片完成签到,获得积分10
15秒前
漂亮的万声完成签到,获得积分10
17秒前
celety发布了新的文献求助10
18秒前
充电宝应助gxqqqqqqq采纳,获得10
18秒前
哭泣的缘郡完成签到 ,获得积分10
18秒前
高分求助中
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
Die Gottesanbeterin: Mantis religiosa: 656 400
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3165024
求助须知:如何正确求助?哪些是违规求助? 2816112
关于积分的说明 7911373
捐赠科研通 2475753
什么是DOI,文献DOI怎么找? 1318362
科研通“疑难数据库(出版商)”最低求助积分说明 632098
版权声明 602370