Representation learning using Attention Network and CNN for Heterogeneous networks

计算机科学 代表(政治) 人工智能 特征学习 机器学习 理论计算机科学 政治学 政治 法学
作者
Ning Tong,Ying Tang,Bo Chen,Lirong Xiong
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:185: 115628-115628 被引量:16
标识
DOI:10.1016/j.eswa.2021.115628
摘要

Network embedding (NE), also known as network representation learning (NRL), is a method to learn a low-dimensional latent representation of nodes in an information network. The real-world data is usually presented in the form of heterogeneous information network (HIN) with multiple types of nodes and edges. Because of the rich information in HINs, it is necessary for a network embedding method to incorporate this information into the low-dimensional potential representation of the nodes as much as possible. In this paper, we propose a semi-supervised representation learning model using a graph attention network and a convolutional neural network (CNN) for HINs, called RANCH. In the part of the graph attention network, we construct a heterogeneous graph attention network using heterogeneous edges to preserve the features of nodes and the structure of network. In the part of the CNN, we leverage a 1D-CNN sentence classification model from natural language processing (NLP) community by adopting edge-constrained truncated random walks to generate node sequences, which can be treated as a corpus of words and sentences. The latter part further integrates the structural information of the network on the basis of the previous part and strengthens the influence of the node’s label information on the node representation. We have performed experiments of node classification on three real-world datasets, and the result shows that our model performs better than the state-of-the-arts. • A network embedding method for heterogeneous information network is proposed. • Most network embedding methods require the use of meta-paths for semantic learning. • The semantic information is learned by multi-typed edges without meta-paths here. • The embeddings of all types of nodes in the network are learned at the same time. • Our model performs better in node classification than most state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JamesPei应助黑暗炸鸡采纳,获得10
刚刚
zhyi完成签到,获得积分20
1秒前
hometown发布了新的文献求助10
1秒前
orixero应助小胡采纳,获得10
1秒前
1秒前
yy完成签到,获得积分20
1秒前
大个应助htx采纳,获得10
1秒前
1秒前
3秒前
王磊完成签到,获得积分10
3秒前
4秒前
饱满以松发布了新的文献求助10
4秒前
mini小萝卜完成签到,获得积分10
4秒前
认真若云发布了新的文献求助10
5秒前
5秒前
黄天完成签到 ,获得积分10
6秒前
fan应助怎么会这样呢采纳,获得10
6秒前
别不开星完成签到,获得积分10
6秒前
7秒前
Ninomae完成签到,获得积分10
7秒前
7秒前
7秒前
8秒前
9秒前
乌漆嘛黑发布了新的文献求助10
10秒前
上上发布了新的文献求助10
10秒前
爆米花应助聪慧雅霜采纳,获得10
10秒前
jingyan发布了新的文献求助10
10秒前
10秒前
XiaoMing发布了新的文献求助100
11秒前
优秀星星完成签到,获得积分10
11秒前
汉堡包应助ppp采纳,获得10
11秒前
野性的博涛完成签到,获得积分10
11秒前
烤番薯发布了新的文献求助10
11秒前
善学以致用应助认真若云采纳,获得10
11秒前
11秒前
Mira完成签到,获得积分10
12秒前
12秒前
完美世界应助qq采纳,获得10
12秒前
13秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979332
求助须知:如何正确求助?哪些是违规求助? 3523278
关于积分的说明 11216934
捐赠科研通 3260722
什么是DOI,文献DOI怎么找? 1800176
邀请新用户注册赠送积分活动 878862
科研通“疑难数据库(出版商)”最低求助积分说明 807113