Representation learning using Attention Network and CNN for Heterogeneous networks

计算机科学 代表(政治) 人工智能 特征学习 机器学习 理论计算机科学 政治学 政治 法学
作者
Ning Tong,Ying Tang,Bo Chen,Lirong Xiong
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:185: 115628-115628 被引量:16
标识
DOI:10.1016/j.eswa.2021.115628
摘要

Network embedding (NE), also known as network representation learning (NRL), is a method to learn a low-dimensional latent representation of nodes in an information network. The real-world data is usually presented in the form of heterogeneous information network (HIN) with multiple types of nodes and edges. Because of the rich information in HINs, it is necessary for a network embedding method to incorporate this information into the low-dimensional potential representation of the nodes as much as possible. In this paper, we propose a semi-supervised representation learning model using a graph attention network and a convolutional neural network (CNN) for HINs, called RANCH. In the part of the graph attention network, we construct a heterogeneous graph attention network using heterogeneous edges to preserve the features of nodes and the structure of network. In the part of the CNN, we leverage a 1D-CNN sentence classification model from natural language processing (NLP) community by adopting edge-constrained truncated random walks to generate node sequences, which can be treated as a corpus of words and sentences. The latter part further integrates the structural information of the network on the basis of the previous part and strengthens the influence of the node’s label information on the node representation. We have performed experiments of node classification on three real-world datasets, and the result shows that our model performs better than the state-of-the-arts. • A network embedding method for heterogeneous information network is proposed. • Most network embedding methods require the use of meta-paths for semantic learning. • The semantic information is learned by multi-typed edges without meta-paths here. • The embeddings of all types of nodes in the network are learned at the same time. • Our model performs better in node classification than most state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_VZG7GZ应助wckow采纳,获得10
刚刚
光亮秋天发布了新的文献求助10
刚刚
guoran完成签到,获得积分10
刚刚
zzh完成签到,获得积分10
刚刚
比邻星发布了新的文献求助10
1秒前
文献狗发布了新的文献求助10
1秒前
2秒前
123完成签到 ,获得积分10
2秒前
3秒前
3秒前
4秒前
我服有点黑完成签到,获得积分10
4秒前
lly完成签到,获得积分10
5秒前
清脆的冬灵完成签到,获得积分10
5秒前
LYY完成签到,获得积分10
6秒前
华仔完成签到,获得积分10
6秒前
6秒前
7秒前
Lucas应助是奶柚啊采纳,获得10
9秒前
王娜发布了新的文献求助10
9秒前
烟花应助开心的凝荷采纳,获得10
9秒前
凉悬完成签到,获得积分10
9秒前
10秒前
10秒前
10秒前
10秒前
端庄的萝完成签到,获得积分10
10秒前
11秒前
dzy1317发布了新的文献求助10
11秒前
小白鞋完成签到 ,获得积分10
11秒前
量子星尘发布了新的文献求助10
11秒前
12秒前
CipherSage应助默默的树叶采纳,获得10
12秒前
光头qia完成签到,获得积分10
12秒前
Joany完成签到,获得积分10
13秒前
13秒前
晨曦呢完成签到 ,获得积分10
13秒前
渔歌唱晚发布了新的文献求助10
14秒前
怕黑乐发布了新的文献求助10
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5419193
求助须知:如何正确求助?哪些是违规求助? 4534612
关于积分的说明 14145618
捐赠科研通 4451091
什么是DOI,文献DOI怎么找? 2441538
邀请新用户注册赠送积分活动 1433211
关于科研通互助平台的介绍 1410533