作者
Lei Guo,Keming Wan,Bin Liu,Yan Wang,Gang Wei
摘要
Carbon nanofibers (CNFs) exhibit the advantages of high mechanical strength, good conductivity, easy production, and low cost, which have shown wide applications in the fields of materials science, nanotechnology, biomedicine, tissue engineering, sensors, wearable electronics, and other aspects. To promote the applications of CNF-based nanomaterials in wearable devices, the flexibility, electronic conductivity, thickness, weight, and bio-safety of CNF-based films/membranes are crucial. In this review, we present recent advances in the fabrication of CNF-based composite nanomaterials for flexible wearable devices. For this aim, firstly we introduce the synthesis and functionalization of CNFs, which promote the optimization of physical, chemical, and biological properties of CNFs. Then, the fabrication of two-dimensional and three-dimensional CNF-based materials are demonstrated. In addition, enhanced electric, mechanical, optical, magnetic, and biological properties of CNFs through the hybridization with other functional nanomaterials by synergistic effects are presented and discussed. Finally, wearable applications of CNF-based materials for flexible batteries, supercapacitors, strain/piezoresistive sensors, bio-signal detectors, and electromagnetic interference shielding devices are introduced and discussed in detail. We believe that this work will be beneficial for readers and researchers to understand both structural and functional tailoring of CNFs, and to design and fabricate novel CNF-based flexible and wearable devices for advanced applications.