Deep Learning in Forestry Using UAV-Acquired RGB Data: A Practical Review

计算机科学 树(集合论) 领域(数学) RGB颜色模型 登录中 决策树 数据科学 机器学习 人工智能 遥感 林业 地理 数学 数学分析 纯数学
作者
Yago Díez,Sarah Kentsch,Motohisa Fukuda,Maximo Larry Lopez Caceres,Koma Moritake,Mariano Cabezas
出处
期刊:Remote Sensing [MDPI AG]
卷期号:13 (14): 2837-2837 被引量:92
标识
DOI:10.3390/rs13142837
摘要

Forests are the planet’s main CO2 filtering agent as well as important economical, environmental and social assets. Climate change is exerting an increased stress, resulting in a need for improved research methodologies to study their health, composition or evolution. Traditionally, information about forests has been collected using expensive and work-intensive field inventories, but in recent years unoccupied autonomous vehicles (UAVs) have become very popular as they represent a simple and inexpensive way to gather high resolution data of large forested areas. In addition to this trend, deep learning (DL) has also been gaining much attention in the field of forestry as a way to include the knowledge of forestry experts into automatic software pipelines tackling problems such as tree detection or tree health/species classification. Among the many sensors that UAVs can carry, RGB cameras are fast, cost-effective and allow for straightforward data interpretation. This has resulted in a large increase in the amount of UAV-acquired RGB data available for forest studies. In this review, we focus on studies that use DL and RGB images gathered by UAVs to solve practical forestry research problems. We summarize the existing studies, provide a detailed analysis of their strengths paired with a critical assessment on common methodological problems and include other information, such as available public data and code resources that we believe can be useful for researchers that want to start working in this area. We structure our discussion using three main families of forestry problems: (1) individual Tree Detection, (2) tree Species Classification, and (3) forest Anomaly Detection (forest fires and insect Infestation).

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
mhl11应助快乐小子采纳,获得10
5秒前
思源应助May采纳,获得10
5秒前
6秒前
科研小趴菜完成签到,获得积分10
8秒前
知性的钢笔完成签到,获得积分10
9秒前
9秒前
JJ完成签到,获得积分10
9秒前
flkn发布了新的文献求助10
11秒前
11秒前
123完成签到,获得积分10
11秒前
ForestEcho发布了新的文献求助10
11秒前
QYQ7完成签到,获得积分10
11秒前
13秒前
14秒前
14秒前
Sew东坡完成签到,获得积分10
15秒前
15秒前
会飞的螃蟹完成签到,获得积分10
16秒前
痴情的靖柔完成签到 ,获得积分10
17秒前
乐天发布了新的文献求助10
17秒前
负责吃饭发布了新的文献求助10
18秒前
19秒前
应夏山发布了新的文献求助30
21秒前
21秒前
Serena完成签到,获得积分10
21秒前
沉梦昂志_hzy完成签到,获得积分0
21秒前
DTH完成签到,获得积分10
21秒前
mhl11应助mark33442采纳,获得10
21秒前
李嘉发布了新的文献求助10
22秒前
23秒前
昵称完成签到,获得积分10
24秒前
李健的小迷弟应助乐天采纳,获得10
24秒前
00完成签到,获得积分10
24秒前
fiona完成签到,获得积分10
24秒前
一一完成签到 ,获得积分10
25秒前
隐形山兰完成签到,获得积分20
25秒前
Singularity应助ww123456采纳,获得10
27秒前
荀万声发布了新的文献求助10
28秒前
yyy完成签到,获得积分10
29秒前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Wanddickenabhängiges Bruchzähigkeitsverhalten und Schädigungsentwicklung in einer Großgusskomponente aus EN-GJS-600-3 1000
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Treatise on Estuarine and Coastal Science (Second Edition) Volume 3: Biogeochemical Cycling 2024 500
Zeitschrift für Orient-Archäologie 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3342189
求助须知:如何正确求助?哪些是违规求助? 2969410
关于积分的说明 8639401
捐赠科研通 2649198
什么是DOI,文献DOI怎么找? 1450607
科研通“疑难数据库(出版商)”最低求助积分说明 671949
邀请新用户注册赠送积分活动 661138