肝纤维化
肝星状细胞
血小板源性生长因子受体
医学
病理
纤维化
磁共振成像
血小板衍生生长因子
PDGFB公司
生长因子
癌症研究
受体
内科学
放射科
作者
Ling Wu,Xiaoquan Huang,Na Li,Cao Xie,Shengxiang Rao,Shiyao Chen,Feng Li
摘要
Activated hepatic stellate cells (HSCs) are the most critical cells responsible for liver fibrosis, and platelet-derived growth factor (PDGF) is the most prominent mitogen for HSCs in fibrogenesis. This study aimed to explore the potential of gadolinium (Gd)-labeled cyclic peptides (pPB) targeting PDGF receptor-β (PDGFR-β) as a magnetic resonance imaging (MRI) radiotracer to identify the progression of liver fibrosis by imaging hepatic PDGFR-β expression.Mice treated with carbon tetrachloride (CCl4 ) were used to mimic hepatic fibrosis in vivo. The binding activity of FITC-labeled pPB to PDGFR-β was assessed in cultured human HSCs (HSC-LX2). MRI was performed to visualize hepatic PDGFR-β expression in mice with different degrees of liver fibrosis after Gd-labeled pPB was injected.Hepatic PDGFR-β expression level was correlated with the severity of liver fibrosis, and the majority of cells expressing PDGFR-β were found to be activated HSCs in fibrotic livers. Culture-activated human HSCs expressed abundant PDGFR-β, and FITC-labeled pPB could bind to these cells in a concentration-dependent and time-dependent manner. With Gd-labeled pPB as a tracer, an MRI modality demonstrated that the relative hepatic T1-weighted MRI signal value progressively increased with the severity of hepatic fibrosis and reduced with remission.Hepatic PDGFR-β expression reflects the progression of hepatic fibrosis, and MRI using Gd-labeled pPB as a tracer exhibits potential for distinguishing liver fibrosis staging in mice.
科研通智能强力驱动
Strongly Powered by AbleSci AI