Signposts for Aquatic Toxicity Evaluation in China: Text Mining using Event-Driven Taxonomy within and among Regions

生物测定 不良结局途径 分类器(UML) 计算机科学 人工智能 化学毒性 事件(粒子物理) 生物 数据科学 计算生物学 机器学习 生态学 环境化学 化学 水污染物 物理 量子力学
作者
Fei Cheng,Huizhen Li,Bryan W. Brooks,Jing You
出处
期刊:Environmental Science & Technology [American Chemical Society]
卷期号:55 (13): 8977-8986 被引量:14
标识
DOI:10.1021/acs.est.1c00152
摘要

Selection of toxicity endpoints affects outcomes of risk assessment. Scientific decisions based on more holistic evidence is preferable for designing bioassay batteries rather than subjective selections, particularly when systems are poorly understood. Here, we propose a novel event-driven taxonomy (EDT)-based text mining tool to prioritize stressors likely to elicit water quality deterioration. The tool integrated automated literature collection, natural language processing using adverse outcome pathway-based toxicological terminologies and machine learning to classify event drivers (EDs). From aquatic toxicity assessments within China over the past decade, we gathered over 14 000 sources of information. With a dictionary that included 1039 toxicological terms, 15 bioassay-related modes of actions were mapped, yet less than half of the bioassays could be elucidated by available adverse outcome pathways. To fill these mechanistic knowledge gaps, we developed a Naïve Bayesian ED-classifier to annotate apical responses. The classifier's 4-fold cross-validation reached 74% accuracy and labeled 85% bioassays as 26 EDs. Narcosis, estrogen receptor-, and aryl hydrogen receptor-mediators were the major EDs in aquatic systems across China, whereas individual regions had distinct ED fingerprints. The EDT-based tool provides a promising diagnostic strategy to inform region-specific bioassay design and selection for water quality assessments in a big data era.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hyr完成签到,获得积分20
刚刚
刚刚
刚刚
汤圆本圆完成签到,获得积分10
1秒前
粥粥发布了新的文献求助10
1秒前
1秒前
彭于晏应助Echo采纳,获得10
1秒前
代沁完成签到,获得积分10
1秒前
cony发布了新的文献求助10
1秒前
1秒前
刘凤莲完成签到,获得积分20
2秒前
2秒前
K先生发布了新的文献求助10
2秒前
三分糖去冰完成签到 ,获得积分10
2秒前
无极微光应助科研通管家采纳,获得20
3秒前
大个应助科研通管家采纳,获得10
3秒前
迃幵发布了新的文献求助10
3秒前
求助人员应助科研通管家采纳,获得10
3秒前
深情安青应助科研通管家采纳,获得10
3秒前
3秒前
4秒前
4秒前
4秒前
zmz驳回了肉鸡应助
4秒前
酷波er应助是小高呀采纳,获得10
4秒前
Doctor_Peng完成签到,获得积分10
4秒前
SciGPT应助小化采纳,获得20
4秒前
4秒前
5秒前
大大发布了新的文献求助10
5秒前
情怀应助夕荀采纳,获得10
5秒前
药药55完成签到,获得积分10
6秒前
6秒前
王叮叮完成签到,获得积分10
6秒前
6秒前
Mobitz发布了新的文献求助20
7秒前
传奇3应助Jiabao采纳,获得10
7秒前
天涯茗玥完成签到,获得积分10
7秒前
8秒前
刘爽完成签到,获得积分10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5574114
求助须知:如何正确求助?哪些是违规求助? 4660331
关于积分的说明 14729315
捐赠科研通 4600225
什么是DOI,文献DOI怎么找? 2524740
邀请新用户注册赠送积分活动 1495018
关于科研通互助平台的介绍 1465034