氧化还原
插层(化学)
电化学
氧化物
氧化态
格子(音乐)
析氧
化学
反应性(心理学)
离子
电子
氧化法
化学物理
阴极
氧气
无机化学
材料科学
电极
化学工程
物理化学
物理
催化作用
量子力学
声学
生物化学
替代医学
工程类
有机化学
医学
病理
作者
Haifeng Li,Arnaud J. Perez,Beata Taudul,Teak D. Boyko,J. W. Freeland,Marie‐Liesse Doublet,Jean‐Marie Tarascon,Jordi Cabana
出处
期刊:Journal of The Electrochemical Society
[The Electrochemical Society]
日期:2021-06-01
卷期号:168 (6): 060541-060541
标识
DOI:10.1149/1945-7111/ac0ad4
摘要
The limits of intercalation electrochemistry continue to be tested in the quest for ever increasing gains in the storage capability of Li-ion cathodes. The subsequent push for multi-electron reactivity has led to the recognition of the extremely versatile role of oxide ligands in charge compensation when there is a large redox swing. Li3IrO4 is a unique model of such activity because it can reversibly cycle between Li1IrO4 and Li4.7IrO4. Here, X-ray spectroscopy, magnetic measurements and computational simulations uncover the evolution of O states in the different steps, compared to the involvement of Ir. While the process between Li1IrO4 and Li3IrO4 is dominated by the unconventional lattice oxygen redox, the process between Li3IrO4 and Li4.7IrO4 involves a conventional change of the formal oxidation state of Ir, which affects O due to the high covalency. The O states of Li3IrO4 exhibit a very high reversibility after the whole 3.7-electron process, completely restoring the pristine state.
科研通智能强力驱动
Strongly Powered by AbleSci AI