Top-k Self-Adaptive Contrast Sequential Pattern Mining

可解释性 判别式 计算机科学 序列(生物学) 树(集合论) 人工智能 数据挖掘 对比度(视觉) 数学 模式识别(心理学) 遗传学 生物 数学分析
作者
Youxi Wu,Wang Yue-hua,Yan Li,Xingquan Zhu,Xindong Wu
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:52 (11): 11819-11833 被引量:36
标识
DOI:10.1109/tcyb.2021.3082114
摘要

For sequence classification, an important issue is to find discriminative features, where sequential pattern mining (SPM) is often used to find frequent patterns from sequences as features. To improve classification accuracy and pattern interpretability, contrast pattern mining emerges to discover patterns with high-contrast rates between different categories. To date, existing contrast SPM methods face many challenges, including excessive parameter selection and inefficient occurrences counting. To tackle these issues, this article proposes a top- k self-adaptive contrast SPM, which adaptively adjusts the gap constraints to find top- k self-adaptive contrast patterns (SCPs) from positive and negative sequences. One of the key tasks of the mining problem is to calculate the support (the number of occurrences) of a pattern in each sequence. To support efficient counting, we store all occurrences of a pattern in a special array in a Nettree, an extended tree structure with multiple roots and multiple parents. We employ the array to calculate the occurrences of all its superpatterns with one-way scanning to avoid redundant calculation. Meanwhile, because the contrast SPM problem does not satisfy the Apriori property, we propose Zero and Less strategies to prune candidate patterns and a Contrast-first mining strategy to select patterns with the highest contrast rate as the prefix subpattern and calculate the contrast rate of all its superpatterns. Experiments validate the efficiency of the proposed algorithm and show that contrast patterns significantly outperform frequent patterns for sequence classification. The algorithms and datasets can be downloaded from https://github.com/wuc567/Pattern-Mining/tree/master/SCP-Miner.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
LiuHao发布了新的文献求助10
1秒前
3秒前
大个应助奥利安费采纳,获得10
3秒前
5秒前
科研小白发布了新的文献求助10
5秒前
青青发布了新的文献求助10
6秒前
9秒前
11秒前
12秒前
13秒前
汉堡包应助HalfGumps采纳,获得10
14秒前
14秒前
16秒前
搜集达人应助南山无梅落采纳,获得10
17秒前
弓長玉王令完成签到,获得积分10
17秒前
17秒前
GreyHeron应助LiuHao采纳,获得10
19秒前
20秒前
20秒前
orixero应助王学成采纳,获得10
22秒前
22秒前
地瓜地瓜完成签到 ,获得积分10
22秒前
ncc完成签到,获得积分20
23秒前
大大小小发布了新的文献求助10
23秒前
27秒前
能干的向真应助清梦采纳,获得10
28秒前
somin应助大大小小采纳,获得10
28秒前
orixero应助正直无极采纳,获得10
28秒前
leibo1994完成签到,获得积分10
30秒前
30秒前
YifanWang应助lant0ng采纳,获得10
31秒前
31秒前
31秒前
32秒前
jxcandice发布了新的文献求助10
32秒前
奥利安费发布了新的文献求助10
33秒前
34秒前
37秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962406
求助须知:如何正确求助?哪些是违规求助? 3508495
关于积分的说明 11141362
捐赠科研通 3241248
什么是DOI,文献DOI怎么找? 1791412
邀请新用户注册赠送积分活动 872861
科研通“疑难数据库(出版商)”最低求助积分说明 803417