Network models of posttraumatic stress disorder: A meta-analysis.

中心性 荟萃分析 心理学 集合(抽象数据类型) 网络分析 网络结构 样本量测定 计算机科学 统计 机器学习 医学 数学 内科学 程序设计语言 物理 量子力学
作者
Adela‐Maria Isvoranu,Sacha Epskamp,Mike W.‐L. Cheung
出处
期刊:Journal of Abnormal Psychology [American Psychological Association]
卷期号:130 (8): 841-861 被引量:41
标识
DOI:10.1037/abn0000704
摘要

Posttraumatic stress disorder (PTSD) researchers have increasingly used psychological network models to investigate PTSD symptom interactions, as well as to identify central driver symptoms. It is unclear, however, how generalizable such results are. We have developed a meta-analytic framework for aggregating network studies while taking between-study heterogeneity into account and applied this framework in the first-ever meta-analytic study of PTSD symptom networks. We analyzed the correlational structures of 52 different samples with a total sample size of n = 29,561 and estimated a single pooled network model underlying the data sets, investigated the scope of between-study heterogeneity, and assessed the performance of network models estimated from single studies. Our main findings are that: (a) We identified large between-study heterogeneity, indicating that it should be expected for networks of single studies to not perfectly align with one-another, and meta-analytic approaches are vital for the study of PTSD networks. (b) While several clear symptom-links, interpretable clusters, and significant differences between strength of edges and centrality of nodes can be identified in the network, no single or small set of nodes that clearly played a more central role than other nodes could be pinpointed, except for the symptom "amnesia" that was clearly the least central symptom. (c) Despite large between-study heterogeneity, we found that network models estimated from single samples can lead to similar network structures as the pooled network model. We discuss the implications of these findings for both the PTSD literature as well as methodological literature on network psychometrics. (PsycInfo Database Record (c) 2021 APA, all rights reserved).

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大个应助小薛超人冒泡泡采纳,获得10
1秒前
1秒前
SYLH应助MCQ采纳,获得20
1秒前
知无涯者发布了新的文献求助10
2秒前
2秒前
2秒前
科研通AI5应助卓梨采纳,获得10
3秒前
4秒前
fisherluo发布了新的文献求助10
5秒前
快乐小汉堡完成签到,获得积分10
6秒前
6秒前
坚强慕蕊关注了科研通微信公众号
7秒前
8秒前
Ring发布了新的文献求助10
8秒前
9秒前
9秒前
tramp应助夏侯觅风采纳,获得10
9秒前
Steven发布了新的文献求助10
11秒前
Master-wang完成签到,获得积分10
13秒前
14秒前
赫连烙发布了新的文献求助10
14秒前
14秒前
风筝完成签到,获得积分10
15秒前
罗小悦完成签到,获得积分10
15秒前
今后应助信仰采纳,获得30
15秒前
16秒前
所所应助子唯采纳,获得10
16秒前
wy.he应助俏皮的白柏采纳,获得10
18秒前
科研通AI5应助毛毛采纳,获得10
19秒前
19秒前
19秒前
小张发布了新的文献求助10
20秒前
吴丹完成签到,获得积分10
21秒前
21秒前
鱼鱼片片发布了新的文献求助10
21秒前
21秒前
22秒前
22秒前
24秒前
量子星尘发布了新的文献求助10
25秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
The Moiseyev Dance Company Tours America: "Wholesome" Comfort during a Cold War 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979896
求助须知:如何正确求助?哪些是违规求助? 3523949
关于积分的说明 11219166
捐赠科研通 3261387
什么是DOI,文献DOI怎么找? 1800629
邀请新用户注册赠送积分活动 879209
科研通“疑难数据库(出版商)”最低求助积分说明 807202