Network models of posttraumatic stress disorder: A meta-analysis.

中心性 荟萃分析 心理学 集合(抽象数据类型) 网络分析 网络结构 样本量测定 计算机科学 统计 机器学习 医学 数学 内科学 程序设计语言 物理 量子力学
作者
Adela‐Maria Isvoranu,Sacha Epskamp,Mike W.‐L. Cheung
出处
期刊:Journal of Abnormal Psychology [American Psychological Association]
卷期号:130 (8): 841-861 被引量:41
标识
DOI:10.1037/abn0000704
摘要

Posttraumatic stress disorder (PTSD) researchers have increasingly used psychological network models to investigate PTSD symptom interactions, as well as to identify central driver symptoms. It is unclear, however, how generalizable such results are. We have developed a meta-analytic framework for aggregating network studies while taking between-study heterogeneity into account and applied this framework in the first-ever meta-analytic study of PTSD symptom networks. We analyzed the correlational structures of 52 different samples with a total sample size of n = 29,561 and estimated a single pooled network model underlying the data sets, investigated the scope of between-study heterogeneity, and assessed the performance of network models estimated from single studies. Our main findings are that: (a) We identified large between-study heterogeneity, indicating that it should be expected for networks of single studies to not perfectly align with one-another, and meta-analytic approaches are vital for the study of PTSD networks. (b) While several clear symptom-links, interpretable clusters, and significant differences between strength of edges and centrality of nodes can be identified in the network, no single or small set of nodes that clearly played a more central role than other nodes could be pinpointed, except for the symptom "amnesia" that was clearly the least central symptom. (c) Despite large between-study heterogeneity, we found that network models estimated from single samples can lead to similar network structures as the pooled network model. We discuss the implications of these findings for both the PTSD literature as well as methodological literature on network psychometrics. (PsycInfo Database Record (c) 2021 APA, all rights reserved).

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
科研通AI2S应助gty采纳,获得10
3秒前
ykh完成签到,获得积分10
3秒前
啦啦啦喽完成签到,获得积分10
5秒前
6秒前
peter完成签到,获得积分10
7秒前
风中小刺猬完成签到,获得积分10
7秒前
8秒前
9秒前
执着平松发布了新的文献求助10
11秒前
14秒前
123456789完成签到,获得积分10
14秒前
14秒前
复杂涵柏完成签到,获得积分10
17秒前
然然发布了新的文献求助10
17秒前
小巧的诗双完成签到,获得积分10
17秒前
所所应助乌拉采纳,获得10
18秒前
18秒前
19秒前
19秒前
sutharsons应助TE采纳,获得30
21秒前
嘉心糖举报彩色向秋求助涉嫌违规
23秒前
23秒前
13165发布了新的文献求助10
23秒前
杀殿发布了新的文献求助10
24秒前
24秒前
HTRH发布了新的文献求助10
24秒前
呼呼闹闹发布了新的文献求助10
25秒前
27秒前
27秒前
suzy发布了新的文献求助10
28秒前
Summer发布了新的文献求助10
29秒前
grisco发布了新的文献求助10
29秒前
30秒前
34秒前
34秒前
HTRH完成签到,获得积分10
34秒前
听话的白易完成签到,获得积分20
34秒前
34秒前
Amon完成签到,获得积分10
36秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3306214
求助须知:如何正确求助?哪些是违规求助? 2939998
关于积分的说明 8495520
捐赠科研通 2614302
什么是DOI,文献DOI怎么找? 1428092
科研通“疑难数据库(出版商)”最低求助积分说明 663259
邀请新用户注册赠送积分活动 648071