Network models of posttraumatic stress disorder: A meta-analysis.

中心性 荟萃分析 心理学 集合(抽象数据类型) 网络分析 网络结构 样本量测定 计算机科学 统计 机器学习 医学 数学 量子力学 物理 内科学 程序设计语言
作者
Adela‐Maria Isvoranu,Sacha Epskamp,Mike W.‐L. Cheung
出处
期刊:Journal of Abnormal Psychology [American Psychological Association]
卷期号:130 (8): 841-861 被引量:61
标识
DOI:10.1037/abn0000704
摘要

Posttraumatic stress disorder (PTSD) researchers have increasingly used psychological network models to investigate PTSD symptom interactions, as well as to identify central driver symptoms. It is unclear, however, how generalizable such results are. We have developed a meta-analytic framework for aggregating network studies while taking between-study heterogeneity into account and applied this framework in the first-ever meta-analytic study of PTSD symptom networks. We analyzed the correlational structures of 52 different samples with a total sample size of n = 29,561 and estimated a single pooled network model underlying the data sets, investigated the scope of between-study heterogeneity, and assessed the performance of network models estimated from single studies. Our main findings are that: (a) We identified large between-study heterogeneity, indicating that it should be expected for networks of single studies to not perfectly align with one-another, and meta-analytic approaches are vital for the study of PTSD networks. (b) While several clear symptom-links, interpretable clusters, and significant differences between strength of edges and centrality of nodes can be identified in the network, no single or small set of nodes that clearly played a more central role than other nodes could be pinpointed, except for the symptom "amnesia" that was clearly the least central symptom. (c) Despite large between-study heterogeneity, we found that network models estimated from single samples can lead to similar network structures as the pooled network model. We discuss the implications of these findings for both the PTSD literature as well as methodological literature on network psychometrics. (PsycInfo Database Record (c) 2021 APA, all rights reserved).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
jzx完成签到,获得积分10
2秒前
3秒前
4秒前
DCYLX完成签到 ,获得积分10
6秒前
可爱的函函应助AIME采纳,获得10
6秒前
当当完成签到,获得积分10
6秒前
orixero应助迷路冰巧采纳,获得10
7秒前
隐形曼青应助默默的奇迹采纳,获得10
8秒前
11秒前
紧张的自中完成签到,获得积分10
12秒前
senli2018发布了新的文献求助10
14秒前
14秒前
疯狂的火发布了新的文献求助10
14秒前
爱学习的憨憨鸭完成签到,获得积分10
15秒前
16秒前
一生所爱完成签到,获得积分10
16秒前
浮游应助zzy采纳,获得10
17秒前
读研的牛马完成签到,获得积分10
18秒前
19秒前
wlscj应助高兴的晓蓝采纳,获得20
19秒前
可爱多应助zhr采纳,获得30
19秒前
19秒前
苗条伟帮完成签到,获得积分10
19秒前
zsp完成签到,获得积分10
20秒前
科研通AI6应助senli2018采纳,获得10
20秒前
AIME完成签到,获得积分10
20秒前
领导范儿应助lonely采纳,获得10
20秒前
21秒前
su发布了新的文献求助10
22秒前
24秒前
AIME发布了新的文献求助10
25秒前
25秒前
FashionBoy应助科研通管家采纳,获得10
26秒前
浮游应助科研通管家采纳,获得10
26秒前
赘婿应助科研通管家采纳,获得10
26秒前
上官若男应助科研通管家采纳,获得10
26秒前
26秒前
科研通AI6应助科研通管家采纳,获得10
26秒前
传奇3应助科研通管家采纳,获得10
26秒前
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mentoring for Wellbeing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1061
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5495259
求助须知:如何正确求助?哪些是违规求助? 4592967
关于积分的说明 14439338
捐赠科研通 4525803
什么是DOI,文献DOI怎么找? 2479715
邀请新用户注册赠送积分活动 1464544
关于科研通互助平台的介绍 1437385