Network models of posttraumatic stress disorder: A meta-analysis.

中心性 荟萃分析 心理学 集合(抽象数据类型) 网络分析 网络结构 样本量测定 计算机科学 统计 机器学习 医学 数学 内科学 程序设计语言 物理 量子力学
作者
Adela‐Maria Isvoranu,Sacha Epskamp,Mike W.‐L. Cheung
出处
期刊:Journal of Abnormal Psychology [American Psychological Association]
卷期号:130 (8): 841-861 被引量:61
标识
DOI:10.1037/abn0000704
摘要

Posttraumatic stress disorder (PTSD) researchers have increasingly used psychological network models to investigate PTSD symptom interactions, as well as to identify central driver symptoms. It is unclear, however, how generalizable such results are. We have developed a meta-analytic framework for aggregating network studies while taking between-study heterogeneity into account and applied this framework in the first-ever meta-analytic study of PTSD symptom networks. We analyzed the correlational structures of 52 different samples with a total sample size of n = 29,561 and estimated a single pooled network model underlying the data sets, investigated the scope of between-study heterogeneity, and assessed the performance of network models estimated from single studies. Our main findings are that: (a) We identified large between-study heterogeneity, indicating that it should be expected for networks of single studies to not perfectly align with one-another, and meta-analytic approaches are vital for the study of PTSD networks. (b) While several clear symptom-links, interpretable clusters, and significant differences between strength of edges and centrality of nodes can be identified in the network, no single or small set of nodes that clearly played a more central role than other nodes could be pinpointed, except for the symptom "amnesia" that was clearly the least central symptom. (c) Despite large between-study heterogeneity, we found that network models estimated from single samples can lead to similar network structures as the pooled network model. We discuss the implications of these findings for both the PTSD literature as well as methodological literature on network psychometrics. (PsycInfo Database Record (c) 2021 APA, all rights reserved).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ye发布了新的文献求助20
1秒前
qinswzaiyu完成签到,获得积分10
2秒前
zhao完成签到,获得积分10
2秒前
2秒前
2秒前
3秒前
3秒前
打打应助卢明举采纳,获得10
3秒前
3秒前
3秒前
情怀应助huang采纳,获得10
3秒前
3秒前
3秒前
3秒前
3秒前
3秒前
3秒前
4秒前
xiyang发布了新的文献求助10
4秒前
4秒前
4秒前
肖雪依完成签到,获得积分10
4秒前
辉辉发布了新的文献求助10
4秒前
4秒前
小陈发布了新的文献求助10
4秒前
4秒前
4秒前
dawn完成签到,获得积分10
4秒前
4秒前
4秒前
4秒前
4秒前
5秒前
5秒前
5秒前
flypipidan发布了新的文献求助10
5秒前
5秒前
斯文败类应助科研通管家采纳,获得10
6秒前
强健的妙菱完成签到,获得积分10
6秒前
杜智诺应助科研通管家采纳,获得10
6秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5750361
求助须知:如何正确求助?哪些是违规求助? 5463653
关于积分的说明 15366595
捐赠科研通 4889446
什么是DOI,文献DOI怎么找? 2629193
邀请新用户注册赠送积分活动 1577502
关于科研通互助平台的介绍 1534001