微气泡
成像体模
非线性系统
超声波
生物医学工程
对比度(视觉)
计算机科学
声学
物理
人工智能
光学
医学
量子力学
作者
Katherine Brown,Kenneth Hoyt
出处
期刊:IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control
[Institute of Electrical and Electronics Engineers]
日期:2021-11-01
卷期号:68 (11): 3347-3361
被引量:17
标识
DOI:10.1109/tuffc.2021.3092172
摘要
The use of super-resolution ultrasound (SR-US) imaging greatly improves visualization of microvascular structures, but clinical adoption is limited by long imaging times. This method depends on detecting and localizing isolated microbubbles (MBs), forcing the use of a dilute contrast agent concentration. Contrast-enhanced ultrasound (CEUS) image acquisition times as long as minutes arise as the localization of thousands of MBs are acquired to form a complete SR-US image. In this article, we explore the use of nonlinear CEUS strategies using nonlinear fundamental contrast pulse sequencing (CPS) to increase the contrast-to-tissue ratio (CTR) and compare MB detection effectiveness to linear B-mode CEUS imaging. The CPS compositions of amplitude modulation (AM), pulse inversion (PI), and a combination of the two (AMPI) were studied. A simulation study combined the Rayleigh–Plesset–Marmottant (RPM) model of MB characteristics and a nonlinear tissue model using the k-Wave toolbox for MATLAB (MathWorks Inc., Natick, MA, USA). Validation was conducted using an in vitro flow phantom and in vivo in the rat hind-limb. Imaging was performed with a programmable US scanner (Vantage 256, Verasonics Inc., Kirkland, WA, USA) and customized to transmit a set of basis US pulses from which both B-mode US (frame rate (FR) of 800 Hz) and multiple nonlinear CPS compositions (FR of 200 Hz) could be assessed from identical in vitro and in vivo datasets using a near simultaneous method. The simulations suggest that MB characteristics, such as diameter and motion, help to predict which US imaging strategy will enhance MB detection. The in vitro and in vivo US imaging studies revealed that different subpopulations of polydisperse MB contrast agents were detected by linear imaging and by each different nonlinear CPS composition. The most effective single imaging strategy at a 200-Hz FR was found to be B-mode US imaging. However, a combination of B-mode US imaging with a nonlinear CPS imaging strategy was more effective in detecting MBs in vivo at all depths and was shown to shorten image acquisition time by an average of 33.3%–76.7% when combining one or more CPS sequences.
科研通智能强力驱动
Strongly Powered by AbleSci AI