Stock price prediction based on stock price synchronicity and deep learning

同步性 库存(枪支) 计算机科学 股票价格 计量经济学 人工智能 机器学习 经济 系列(地层学) 机械工程 生物 认识论 工程类 哲学 古生物学
作者
Jing Nan,Qi Liu,Hefei Wang
出处
期刊:International journal of financial engineering [World Scientific]
卷期号:08 (02): 2141010-2141010 被引量:1
标识
DOI:10.1142/s2424786321410103
摘要

Deep learning technology has been widely used in the financial industry, primarily for improving financial time series prediction based on stock prices. To solve the problem of low fitting and poor accuracy in traditional stock price prediction models, this paper proposes a stock price prediction model based on stock price synchronicity and deep learning methods, which applied the stock price synchronicity theory in stock price trend analysis. This paper first uses the affinity propagation algorithm to build stock clusters, and then, based on convolution neural network (CNN), and feature weight to construct the stock price synchronicity factor. At last, the long short-term memory (LSTM) network with multifactor is built for stock price trend analysis. According to the theory of stock price synchronicity, the affinity propagation algorithm can find the potential related stocks of the target stock. The spatial data analysis ability of the CNN model provides a guarantee for the application in stock price synchronicity factor analysis. The LSTM model can better analyze the information contained in the stock price time series and predict the future price. The experimental results show that, compared with the traditional multilayer neural network model, the LSTM model has better accuracy in the trend prediction of the stock price. Simultaneously, the application of stock price synchronicity effectively improves the performance of the multifactor LSTM network.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
666完成签到,获得积分10
刚刚
Ripples完成签到,获得积分10
刚刚
1秒前
1秒前
赵哈哈完成签到,获得积分10
1秒前
2秒前
3秒前
小柠檬发布了新的文献求助10
3秒前
he发布了新的文献求助10
3秒前
3秒前
CodeCraft应助啵啵采纳,获得10
3秒前
4秒前
otaro发布了新的文献求助30
4秒前
贝利亚发布了新的文献求助10
4秒前
清脆的台灯完成签到,获得积分10
5秒前
范范完成签到 ,获得积分10
5秒前
星辰大海应助starry采纳,获得10
6秒前
科研通AI5应助Xxxnnian采纳,获得30
6秒前
执着的小蘑菇完成签到,获得积分10
7秒前
7秒前
丘比特应助科研通管家采纳,获得10
7秒前
小蘑菇应助科研通管家采纳,获得10
7秒前
顺顺发布了新的文献求助10
7秒前
上官若男应助科研通管家采纳,获得30
7秒前
汉堡包应助科研通管家采纳,获得30
7秒前
7秒前
烟花应助科研通管家采纳,获得10
8秒前
李健应助科研通管家采纳,获得10
8秒前
李爱国应助科研通管家采纳,获得10
8秒前
星辰大海应助科研通管家采纳,获得10
8秒前
大模型应助科研通管家采纳,获得10
8秒前
天天快乐应助科研通管家采纳,获得10
8秒前
爆米花应助科研通管家采纳,获得10
8秒前
大个应助科研通管家采纳,获得10
8秒前
NexusExplorer应助科研通管家采纳,获得10
8秒前
maox1aoxin应助科研通管家采纳,获得30
8秒前
无花果应助科研通管家采纳,获得10
9秒前
11完成签到,获得积分10
9秒前
9秒前
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678