Classifying depression using blood biomarkers: A large population study

全国健康与营养检查调查 医学 超重 萧条(经济学) 糖尿病 生物标志物 心情 内科学 肥胖 人口 精神科 环境卫生 内分泌学 生物化学 化学 经济 宏观经济学
作者
Ziqiang Lin,Wayne R. Lawrence,Yanhong Huang,Qiaoxuan Lin,Yanhui Gao
出处
期刊:Journal of Psychiatric Research [Elsevier BV]
卷期号:140: 364-372 被引量:14
标识
DOI:10.1016/j.jpsychires.2021.05.070
摘要

Depression is a common mood disorder characterized by persistent low mood or lack of interest in activities. People with other chronic medical conditions such as obesity and diabetes are at greater risk of depression. Diagnosing depression can be a challenge for primary care providers and others who lack specialized training for these disorders and have insufficient time for in-depth clinical evaluation. We aimed to create a more objective low-cost diagnostic tool based on patients' characteristics and blood biomarkers. Blood biomarker results were obtained from the National Health and Nutrition Examination Survey (NHANES, 2007–2016). A prediction model utilizing random forest (RF) in NHANES (2007–2014) to identify depression was derived and validated internally using out-of-bag technique. Afterwards, the model was validated externally using a validation dataset (NHANES, 2015–2016). We performed four subgroup comparisons (full dataset, overweight and obesity dataset (BMI≥25), diabetes dataset, and metabolic syndrome dataset) then selected features using backward feature selection from RF. Family income, Gamma-glutamyl transferase (GGT), glucose, Triglyceride, red cell distribution width (RDW), creatinine, Basophils count or percent, Eosinophils count or percent, and Bilirubin were the most important features from four models. In the training set, AUC from full, overweight and obesity, diabetes, and metabolic syndrome datasets were 0.83, 0.80, 0.82, and 0.82, respectively. In the validation set, AUC were 0.69, 0.63, 0.66, and 0.64, respectively. Results of routine blood laboratory tests had good predictive value for distinguishing depression cases from control groups not only in the general population, but also individuals with metabolism-related chronic diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
量子星尘发布了新的文献求助10
3秒前
DYYDYY完成签到,获得积分10
3秒前
gg发布了新的文献求助10
4秒前
眼睛大又蓝完成签到,获得积分10
4秒前
4秒前
黄婷发布了新的文献求助10
5秒前
7秒前
科目三应助kkeyanxiaozi采纳,获得10
8秒前
摩卡完成签到,获得积分10
8秒前
鸽子发布了新的文献求助30
9秒前
1111发布了新的文献求助10
9秒前
lxz发布了新的文献求助10
12秒前
13秒前
爱学习完成签到,获得积分10
13秒前
epiphany完成签到,获得积分20
14秒前
14秒前
黄婷完成签到,获得积分10
16秒前
17秒前
19秒前
chen完成签到,获得积分20
20秒前
20秒前
李冯程发布了新的文献求助10
20秒前
酷炫的听枫完成签到 ,获得积分10
21秒前
epiphany发布了新的文献求助10
21秒前
多多发SCI发布了新的文献求助10
22秒前
22秒前
安静的手链完成签到,获得积分10
22秒前
听说外面下雨了完成签到,获得积分10
23秒前
李健的小迷弟应助dyuephy采纳,获得10
24秒前
黄晓杰2024完成签到,获得积分10
25秒前
有梦不觉人生寒完成签到,获得积分10
25秒前
今后应助超速也文章采纳,获得10
26秒前
回鱼发布了新的文献求助10
26秒前
26秒前
榛蘑大王发布了新的文献求助10
27秒前
30秒前
31秒前
32秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979788
求助须知:如何正确求助?哪些是违规求助? 3523806
关于积分的说明 11218898
捐赠科研通 3261339
什么是DOI,文献DOI怎么找? 1800544
邀请新用户注册赠送积分活动 879177
科研通“疑难数据库(出版商)”最低求助积分说明 807182