亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Machine learning in oral squamous cell carcinoma: Current status, clinical concerns and prospects for future—A systematic review

机器学习 斯科普斯 人工智能 系统回顾 计算机科学 医学 荟萃分析 医学物理学 梅德林 病理 政治学 法学
作者
Rasheed Omobolaji Alabi,Omar Youssef,Matti Pirinen,Mohammed Elmusrati,Antti Mäkitie,Ilmo Leivo,Alhadi Almangush
出处
期刊:Artificial Intelligence in Medicine [Elsevier]
卷期号:115: 102060-102060 被引量:115
标识
DOI:10.1016/j.artmed.2021.102060
摘要

Oral cancer can show heterogenous patterns of behavior. For proper and effective management of oral cancer, early diagnosis and accurate prediction of prognosis are important. To achieve this, artificial intelligence (AI) or its subfield, machine learning, has been touted for its potential to revolutionize cancer management through improved diagnostic precision and prediction of outcomes. Yet, to date, it has made only few contributions to actual medical practice or patient care. This study provides a systematic review of diagnostic and prognostic application of machine learning in oral squamous cell carcinoma (OSCC) and also highlights some of the limitations and concerns of clinicians towards the implementation of machine learning-based models for daily clinical practice. We searched OvidMedline, PubMed, Scopus, Web of Science, and Institute of Electrical and Electronics Engineers (IEEE) databases from inception until February 2020 for articles that used machine learning for diagnostic or prognostic purposes of OSCC. Only original studies that examined the application of machine learning models for prognostic and/or diagnostic purposes were considered. Independent extraction of articles was done by two researchers (A.R. & O.Y) using predefine study selection criteria. We used the Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) in the searching and screening processes. We also used Prediction model Risk of Bias Assessment Tool (PROBAST) for assessing the risk of bias (ROB) and quality of included studies. A total of 41 studies were published to have used machine learning to aid in the diagnosis/or prognosis of OSCC. The majority of these studies used the support vector machine (SVM) and artificial neural network (ANN) algorithms as machine learning techniques. Their specificity ranged from 0.57 to 1.00, sensitivity from 0.70 to 1.00, and accuracy from 63.4 % to 100.0 % in these studies. The main limitations and concerns can be grouped as either the challenges inherent to the science of machine learning or relating to the clinical implementations. Machine learning models have been reported to show promising performances for diagnostic and prognostic analyses in studies of oral cancer. These models should be developed to further enhance explainability, interpretability, and externally validated for generalizability in order to be safely integrated into daily clinical practices. Also, regulatory frameworks for the adoption of these models in clinical practices are necessary.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
David完成签到 ,获得积分10
刚刚
左左嘀嘀嘀完成签到,获得积分10
1秒前
7秒前
8秒前
等待秀发布了新的文献求助10
12秒前
13秒前
taku完成签到 ,获得积分10
16秒前
wangfaqing942完成签到 ,获得积分10
17秒前
123发布了新的文献求助10
18秒前
皮包医师发布了新的文献求助10
21秒前
迷路的问儿应助皮包医师采纳,获得10
27秒前
万能图书馆应助皮包医师采纳,获得10
27秒前
脑洞疼应助酷炫的鸡翅采纳,获得10
28秒前
共享精神应助科研通管家采纳,获得10
37秒前
南宫萍发布了新的文献求助10
43秒前
谭文完成签到 ,获得积分10
45秒前
万能图书馆应助等待秀采纳,获得10
45秒前
49秒前
55秒前
56秒前
等待秀发布了新的文献求助10
1分钟前
1分钟前
1分钟前
阿尼完成签到 ,获得积分10
1分钟前
1分钟前
刘卫朋发布了新的文献求助10
1分钟前
1分钟前
研友_VZG7GZ应助沉稳效师旅采纳,获得10
1分钟前
南宫萍完成签到,获得积分10
1分钟前
1分钟前
南桥发布了新的文献求助10
1分钟前
Orange应助刘卫朋采纳,获得10
1分钟前
sdlkufo发布了新的文献求助30
1分钟前
1分钟前
沉稳效师旅完成签到,获得积分10
1分钟前
爆米花应助等待秀采纳,获得10
1分钟前
1分钟前
1分钟前
研友_ZrllXL发布了新的文献求助10
1分钟前
等待秀发布了新的文献求助10
1分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3466773
求助须知:如何正确求助?哪些是违规求助? 3059575
关于积分的说明 9067027
捐赠科研通 2750035
什么是DOI,文献DOI怎么找? 1508917
科研通“疑难数据库(出版商)”最低求助积分说明 697124
邀请新用户注册赠送积分活动 696896