Re-engineering transition layers in AlGaN/GaN HEMT on Si for high voltage applications

材料科学 光电子学 高电子迁移率晶体管 兴奋剂 化学气相沉积 泄漏(经济) 金属有机气相外延 宽禁带半导体 阻挡层 图层(电子) 外延 晶体管 电压 纳米技术 电气工程 经济 宏观经济学 工程类
作者
Nayana Remesh,Hareesh Chandrasekar,Anirudh Venugopalrao,Srinivasan Raghavan,Rangarajan Muralidharan,Digbijoy N. Nath
出处
期刊:Journal of Applied Physics [American Institute of Physics]
卷期号:130 (7) 被引量:13
标识
DOI:10.1063/5.0045952
摘要

We report on the study of step-graded AlGaN transition layers (TLs) in metalorganic chemical vapor deposition-grown GaN HEMT-on-silicon toward improving the breakdown field while minimizing buffer-induced current dispersion. The transition layers include three AlGaN epi-layers of 75%, 50%, and 25% Al-content, downgraded from bottom to top. The growth temperature and carbon doping are varied independently to assess the transition layer's role in reducing current collapse and leakage current. We observe that the introduction of High Temperature (HT) AlGaN increases the lateral but decreases the vertical leakage, the latter being attributed to the reduction of V-pit density. Temperature-dependent data indicate that the increased lateral (mesa) leakage current in HT AlGaN layers is due to space charge limited current, the activation energy of which yields the positions of the defect states within the bandgap. The increase in mesa leakage current in HT AlGaN layers is attributed to the formation of point defects such as oxygen in nitrogen site (ON) and VGa–ON complexes. The introduction of C-doping in the top AlGaN transition layer with 25% Al-content helps reduce lateral leakage in both mesa and 3-terminal configurations. The combination of HT AlGaN (75% Al-content) with C-doped AlGaN (25% Al-content) is found to be the optimal TL design that yielded a minimum buffer-induced current dispersion with a 65% channel recovery when the substrate was swept to −300 V and back; moreover, it also enabled a vertical breakdown field of 2.05 MV/cm defined at 1 A/cm2 for a buffer thickness of 1.65 μm.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lucas应助yh采纳,获得10
刚刚
舒适涵山完成签到,获得积分10
刚刚
刚刚
2秒前
Akim应助东郭寻凝采纳,获得20
3秒前
3秒前
科研通AI40应助满天星采纳,获得10
5秒前
5秒前
orixero应助小胡采纳,获得10
6秒前
6秒前
6秒前
零123完成签到,获得积分20
6秒前
杨乃彬完成签到,获得积分10
7秒前
华仔应助茸茸茸采纳,获得10
7秒前
Shen发布了新的文献求助10
7秒前
hyg发布了新的文献求助10
8秒前
8秒前
9秒前
1122321发布了新的文献求助10
9秒前
零123发布了新的文献求助10
9秒前
打打应助Kevin采纳,获得10
11秒前
145发布了新的文献求助10
11秒前
安然发布了新的文献求助10
14秒前
14秒前
慕青应助1122321采纳,获得10
15秒前
所所应助零123采纳,获得10
15秒前
17秒前
烟花应助科研通管家采纳,获得10
18秒前
星辰大海应助科研通管家采纳,获得10
18秒前
欢呼洋葱应助科研通管家采纳,获得10
18秒前
18秒前
Jasper应助科研通管家采纳,获得10
18秒前
zxcsdfa应助科研通管家采纳,获得10
18秒前
SciGPT应助科研通管家采纳,获得10
18秒前
欢呼洋葱应助科研通管家采纳,获得10
18秒前
星辰大海应助科研通管家采纳,获得10
18秒前
领导范儿应助科研通管家采纳,获得10
18秒前
gg完成签到,获得积分10
18秒前
小蘑菇应助科研通管家采纳,获得10
18秒前
18秒前
高分求助中
Genetics: From Genes to Genomes 3000
Production Logging: Theoretical and Interpretive Elements 2500
Continuum thermodynamics and material modelling 2000
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Diabetes: miniguías Asklepios 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3471080
求助须知:如何正确求助?哪些是违规求助? 3063958
关于积分的说明 9086723
捐赠科研通 2754610
什么是DOI,文献DOI怎么找? 1511504
邀请新用户注册赠送积分活动 698446
科研通“疑难数据库(出版商)”最低求助积分说明 698351