Intrinsic Hyperspectral Image Decomposition With DSM Cues

高光谱成像 计算机科学 人工智能 计算机视觉 RGB颜色模型 渲染(计算机图形) 遥感 地质学
作者
Xudong Jin,Yanfeng Gu,Wen Bin Xie
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-13 被引量:2
标识
DOI:10.1109/tgrs.2021.3102644
摘要

Intrinsic hyperspectral image decomposition (IHID) aims to recover physical scene properties such as reflectance and illumination from a given hyperspectral image (HSI), which directly respects the physical imaging process and can benefit many HSI processing tasks. It is a severely ill-posed problem and is challenging to solve using HSI alone. Additional geometric information provided by digital surface models (DSMs) can otherwise help immensely. While intrinsic image decomposition for RGB images and RGB-D images has been studied extensively during the past few decades and has seen significant progress, studies of the problem for other types of data, such as HSIs and DSMs, are still needed. It is much more challenging to handle an HSI with hundreds of channels than an RGB image with only three channels. Moreover, compared with RGB-D data, HSIs and DSM data usually have much lower spatial resolutions and more complicated land covers, making it difficult to extend the RGB-D intrinsic image method directly. In this article, we present a novel IHID framework for HSIs with DSM cues. Utilizing spherical-harmonic illumination, we first propose a convenient HSI rendering model with DSM, which describes the interplay of material reflectance, geometric distribution, and environment illumination. Then, we introduce local and nonlocal priors on reflectance that ensure the local smooth and global consistency of recovered reflectance. Experiments on synthetic and real data demonstrate that the proposed method outperforms the state-of-the-art methods and is robust to illumination changes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
esdese发布了新的文献求助10
4秒前
超越俗尘完成签到,获得积分10
4秒前
明时完成签到,获得积分10
5秒前
CMUSK完成签到,获得积分10
7秒前
小核桃完成签到 ,获得积分10
10秒前
勤恳的嚓茶完成签到,获得积分10
10秒前
12秒前
Freddy完成签到 ,获得积分10
12秒前
LIKUN完成签到,获得积分10
12秒前
BinSir完成签到 ,获得积分10
12秒前
jkaaa完成签到,获得积分10
14秒前
Tin完成签到,获得积分10
17秒前
fawr完成签到 ,获得积分10
18秒前
量子星尘发布了新的文献求助10
21秒前
今后应助奥里给医学生采纳,获得10
22秒前
魔幻的妖丽完成签到 ,获得积分0
23秒前
shuan完成签到,获得积分10
27秒前
吴晨曦完成签到,获得积分10
28秒前
量子星尘发布了新的文献求助10
31秒前
落叶完成签到 ,获得积分0
32秒前
研友_Zrlk7L完成签到,获得积分10
33秒前
丽莫莫完成签到,获得积分10
38秒前
丁丁发布了新的文献求助10
38秒前
安静严青完成签到 ,获得积分10
42秒前
量子星尘发布了新的文献求助10
45秒前
科科通通完成签到,获得积分10
45秒前
量子星尘发布了新的文献求助10
46秒前
47秒前
大猫不吃鱼完成签到,获得积分10
47秒前
48秒前
成就大白菜真实的钥匙完成签到 ,获得积分10
50秒前
草莓熊1215完成签到 ,获得积分10
51秒前
江湖完成签到,获得积分10
54秒前
东日完成签到,获得积分10
56秒前
sunnyqqz完成签到,获得积分10
57秒前
刚子完成签到 ,获得积分10
58秒前
葡紫明完成签到 ,获得积分10
58秒前
岁月如歌完成签到 ,获得积分0
1分钟前
排骨年糕完成签到 ,获得积分10
1分钟前
longmad完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Digitizing Enlightenment: Digital Humanities and the Transformation of Eighteenth-Century Studies 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5671581
求助须知:如何正确求助?哪些是违规求助? 4920068
关于积分的说明 15135054
捐赠科研通 4830410
什么是DOI,文献DOI怎么找? 2587061
邀请新用户注册赠送积分活动 1540682
关于科研通互助平台的介绍 1498986