Matrix factorization-based data fusion for the prediction of RNA-binding proteins and alternative splicing event associations during epithelial-mesenchymal transition.

RNA剪接 生物 生物信息学
作者
Yushan Qiu,Wai-Ki Ching,Quan Zou
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:22 (6) 被引量:2
标识
DOI:10.1093/bib/bbab332
摘要

Motivation The epithelial-mesenchymal transition (EMT) is a cellular-developmental process activated during tumor metastasis. Transcriptional regulatory networks controlling EMT are well studied; however, alternative RNA splicing also plays a critical regulatory role during this process. Unfortunately, a comprehensive understanding of alternative splicing (AS) and the RNA-binding proteins (RBPs) that regulate it during EMT remains largely unknown. Therefore, a great need exists to develop effective computational methods for predicting associations of RBPs and AS events. Dramatically increasing data sources that have direct and indirect information associated with RBPs and AS events have provided an ideal platform for inferring these associations. Results In this study, we propose a novel method for RBP-AS target prediction based on weighted data fusion with sparse matrix tri-factorization (WDFSMF in short) that simultaneously decomposes heterogeneous data source matrices into low-rank matrices to reveal hidden associations. WDFSMF can select and integrate data sources by assigning different weights to those sources, and these weights can be assigned automatically. In addition, WDFSMF can identify significant RBP complexes regulating AS events and eliminate noise and outliers from the data. Our proposed method achieves an area under the receiver operating characteristic curve (AUC) of $90.78\%$, which shows that WDFSMF can effectively predict RBP-AS event associations with higher accuracy compared with previous methods. Furthermore, this study identifies significant RBPs as complexes for AS events during EMT and provides solid ground for further investigation into RNA regulation during EMT and metastasis. WDFSMF is a general data fusion framework, and as such it can also be adapted to predict associations between other biological entities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
闪闪寒荷完成签到 ,获得积分10
刚刚
南北发布了新的文献求助10
1秒前
姜夔发布了新的文献求助10
1秒前
奔跑石小猛完成签到,获得积分10
2秒前
2秒前
さくま完成签到,获得积分10
3秒前
4秒前
5秒前
紫麒麟发布了新的文献求助10
5秒前
LZHWSND完成签到,获得积分10
5秒前
5秒前
6秒前
6秒前
7秒前
bkagyin应助北极光采纳,获得10
8秒前
风评完成签到,获得积分20
8秒前
8秒前
唯有发布了新的文献求助10
9秒前
17852573662完成签到,获得积分10
9秒前
NancyDee完成签到,获得积分10
9秒前
飘着的鬼完成签到 ,获得积分10
9秒前
落寞傲南发布了新的文献求助20
9秒前
11秒前
ShowMaker应助我不是很帅采纳,获得20
11秒前
11秒前
12秒前
15秒前
16秒前
CodeCraft应助缥缈的铅笔采纳,获得10
16秒前
可爱的函函应助爱吃西瓜采纳,获得10
19秒前
19秒前
唯有发布了新的文献求助10
19秒前
时光如梭发布了新的文献求助10
20秒前
heart发布了新的文献求助10
21秒前
21秒前
我是大兴完成签到,获得积分10
21秒前
22秒前
22秒前
丘比特应助六点一横采纳,获得10
22秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3149204
求助须知:如何正确求助?哪些是违规求助? 2800294
关于积分的说明 7839427
捐赠科研通 2457845
什么是DOI,文献DOI怎么找? 1308138
科研通“疑难数据库(出版商)”最低求助积分说明 628436
版权声明 601706