Temporal trends of the association between extreme temperatures and hospitalisations for schizophrenia in Hefei, China from 2005 to 2014

百分位 泊松回归 极寒 医学 人口学 极热 中国 环境卫生 气候学 地理 人口 统计 气候变化 数学 生物 考古 社会学 地质学 生态学
作者
Rubing Pan,Qizhi Wang,Weizhuo Yi,Qiannan Wei,Jian Cheng,Hong Su
出处
期刊:Occupational and Environmental Medicine [BMJ]
卷期号:78 (5): 364-370 被引量:6
标识
DOI:10.1136/oemed-2020-107181
摘要

Objective We aimed to examine the temporal trends of the association between extreme temperature and schizophrenia (SCZ) hospitalisations in Hefei, China. Methods We collected time-series data on SCZ hospitalisations for 10 years (2005–2014), with a total of 36 607 cases registered. We used quasi-Poisson regression and distributed lag non-linear model (DLNM) to assess the association between extreme temperature (cold and heat) and SCZ hospitalisations. A time-varying DLNM was then used to explore the temporal trends of the association between extreme temperature and SCZ hospitalisations in different periods. Subgroup analyses were conducted by age (0–39 and 40+ years) and gender, respectively. Results We found that extreme cold and heat significantly increased the risk of SCZ hospitalisations (cold: 1st percentile of temperature 1.19 (95% CI 1.04 to 1.37) and 2.5th percentile of temperature 1.16 (95% CI 1.03 to 1.31); heat: 97.5th percentile of temperature 1.37 (95% CI 1.13 to 1.66) and 99th percentile of temperature 1.38 (95% CI 1.13 to 1.69)). We found a slightly decreasing trend in heat-related SCZ hospitalisations and a sharp increasing trend in cold effects from 2005 to 2014. However, the risk of heat-related hospitalisation has been rising since 2008. Stratified analyses showed that age and gender had different modification effects on temporal trends. Conclusions The findings highlight that as temperatures rise the body’s adaptability to high temperatures may be accompanied by more threats from extreme cold. The burden of cold-related SCZ hospitalisations may increase in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
2秒前
2秒前
忘羡222发布了新的文献求助20
3秒前
丰富猕猴桃完成签到,获得积分10
4秒前
4秒前
4秒前
4秒前
JamesPei应助咿咿呀呀采纳,获得10
4秒前
www完成签到,获得积分10
4秒前
科研通AI2S应助Jenny采纳,获得10
5秒前
limin完成签到,获得积分10
6秒前
6秒前
风格完成签到,获得积分10
7秒前
情怀应助专心搞学术采纳,获得20
8秒前
8秒前
zeke发布了新的文献求助10
8秒前
不爱吃糖发布了新的文献求助10
9秒前
852应助冷傲迎梦采纳,获得10
10秒前
陶醉觅夏发布了新的文献求助200
11秒前
11秒前
exile完成签到,获得积分10
12秒前
朱一龙发布了新的文献求助10
12秒前
mawenting完成签到 ,获得积分10
14秒前
zeke完成签到,获得积分10
15秒前
科研通AI5应助solobang采纳,获得10
16秒前
16秒前
小宇OvO发布了新的文献求助10
17秒前
17秒前
忘羡222完成签到,获得积分10
17秒前
专一发布了新的文献求助10
19秒前
跳跃曼文完成签到,获得积分10
20秒前
干将莫邪完成签到,获得积分10
21秒前
SYLH应助exile采纳,获得10
21秒前
小二郎应助魔幻的从梦采纳,获得10
22秒前
23秒前
雪鸽鸽发布了新的文献求助10
23秒前
24秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824