亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Evaluation and Prediction of Topsoil organic carbon using Machine learning and hybrid models at a Field-scale

环境科学 土壤碳 土壤科学 表土 土壤水分 比例(比率) 计算机科学 人工神经网络 数字土壤制图 土壤有机质
作者
Hamid Reza Matinfar,Ziba Maghsodi,Sayed Roholla Mousavi,Asghar Rahmani
出处
期刊:Catena [Elsevier BV]
卷期号:202: 105258- 被引量:4
标识
DOI:10.1016/j.catena.2021.105258
摘要

Abstract Digital mapping of soil organic carbon (SOC) is crucial to evaluate its spatial variability and also to assess environmental factors controlling it at field scale. The current study was conducted to compare one statistical method include partial least squares regression (PLSR), four individual machine learning(ML) algorithms including random forest (RF), quantile regression forest (QRF), cubist (CB), fuzzy logic (SoLIM) along with two hybrid methods including the random forest-ordinary kriging (RF-OK) and quantile random regression forest-ordinary kriging (QRF-OK) to map SOC. A number of 146 soil samples (0–30 cm) were collected in Khorramabad plain (680 ha). For the quantitative evaluation of SOC spatial variability, two scenarios were considered to use remote sensing data (R) and a combination of geo-morphometric and remote sensing data (GR). The data randomly were split into 80% (117 points) for training and 20% (29 points) for validation. The model performances were evaluated by the statistical indices as the coefficient of determination (R2), root mean square error (RMSE). According to principal component analysis (PCA), nine covariates including transformed soil adjusted vegetation index (TSAVI), relative vegetation index (RVI), Band 10, Band 11,Digital Elevation Model (DEM), Standard height(Standard_he), Valley_Dep, terrain surface texture (texture), and terrain surface convexity (Convexity) were selected as the environmental predictors. Results showed that the hybrid model RF-OK (RMSE = 0.05and R2 = 0.93) and SoLIM model (RMSE = 0.47and R2 = 0.41) with scenario GR had the highest and lowest accurate respectively. TSAVI, DEM, and Band 10 were the most important predictors and explanation more than 50% of SOC spatial variability in the study area. Generally, using hybrid machine learning models in combination with geo-morphometric and remote sensing covariates make it possible to model and predict SOC with acceptable accurate in the field-scale croplands.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
李健应助堕落的飞猪采纳,获得10
2秒前
4秒前
pure123完成签到,获得积分10
4秒前
wenliu完成签到,获得积分10
4秒前
普通用户30号完成签到 ,获得积分10
6秒前
wenliu发布了新的文献求助10
7秒前
9秒前
23秒前
29秒前
39秒前
40秒前
41秒前
dtsgydbd发布了新的文献求助10
44秒前
饼子发布了新的文献求助10
46秒前
唐泽雪穗发布了新的文献求助10
47秒前
58秒前
59秒前
1分钟前
wrl2023完成签到,获得积分10
1分钟前
魏佳奇发布了新的文献求助10
1分钟前
赘婿应助dtsgydbd采纳,获得10
1分钟前
从容芮应助科研通管家采纳,获得50
1分钟前
GingerF应助科研通管家采纳,获得60
1分钟前
从容芮应助科研通管家采纳,获得50
1分钟前
从容芮应助科研通管家采纳,获得50
1分钟前
从容芮应助科研通管家采纳,获得50
1分钟前
从容芮应助科研通管家采纳,获得50
1分钟前
tuanheqi应助科研通管家采纳,获得150
1分钟前
从容芮应助科研通管家采纳,获得50
1分钟前
从容芮应助科研通管家采纳,获得50
1分钟前
cc完成签到,获得积分10
1分钟前
334niubi666完成签到 ,获得积分10
1分钟前
丘比特应助魏佳奇采纳,获得10
1分钟前
1分钟前
1分钟前
Nancy0818完成签到 ,获得积分10
2分钟前
脑洞疼应助槑槑采纳,获得10
2分钟前
2分钟前
下文献的蜉蝣完成签到,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
A Half Century of the Sonogashira Reaction 1000
Artificial Intelligence driven Materials Design 600
Investigation the picking techniques for developing and improving the mechanical harvesting of citrus 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5186254
求助须知:如何正确求助?哪些是违规求助? 4371519
关于积分的说明 13612286
捐赠科研通 4223980
什么是DOI,文献DOI怎么找? 2316753
邀请新用户注册赠送积分活动 1315380
关于科研通互助平台的介绍 1264495