Evaluation and Prediction of Topsoil organic carbon using Machine learning and hybrid models at a Field-scale

环境科学 土壤碳 土壤科学 表土 土壤水分 比例(比率) 计算机科学 人工神经网络 数字土壤制图 土壤有机质
作者
Hamid Reza Matinfar,Ziba Maghsodi,Sayed Roholla Mousavi,Asghar Rahmani
出处
期刊:Catena [Elsevier]
卷期号:202: 105258- 被引量:4
标识
DOI:10.1016/j.catena.2021.105258
摘要

Abstract Digital mapping of soil organic carbon (SOC) is crucial to evaluate its spatial variability and also to assess environmental factors controlling it at field scale. The current study was conducted to compare one statistical method include partial least squares regression (PLSR), four individual machine learning(ML) algorithms including random forest (RF), quantile regression forest (QRF), cubist (CB), fuzzy logic (SoLIM) along with two hybrid methods including the random forest-ordinary kriging (RF-OK) and quantile random regression forest-ordinary kriging (QRF-OK) to map SOC. A number of 146 soil samples (0–30 cm) were collected in Khorramabad plain (680 ha). For the quantitative evaluation of SOC spatial variability, two scenarios were considered to use remote sensing data (R) and a combination of geo-morphometric and remote sensing data (GR). The data randomly were split into 80% (117 points) for training and 20% (29 points) for validation. The model performances were evaluated by the statistical indices as the coefficient of determination (R2), root mean square error (RMSE). According to principal component analysis (PCA), nine covariates including transformed soil adjusted vegetation index (TSAVI), relative vegetation index (RVI), Band 10, Band 11,Digital Elevation Model (DEM), Standard height(Standard_he), Valley_Dep, terrain surface texture (texture), and terrain surface convexity (Convexity) were selected as the environmental predictors. Results showed that the hybrid model RF-OK (RMSE = 0.05and R2 = 0.93) and SoLIM model (RMSE = 0.47and R2 = 0.41) with scenario GR had the highest and lowest accurate respectively. TSAVI, DEM, and Band 10 were the most important predictors and explanation more than 50% of SOC spatial variability in the study area. Generally, using hybrid machine learning models in combination with geo-morphometric and remote sensing covariates make it possible to model and predict SOC with acceptable accurate in the field-scale croplands.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yudandan@CJLU发布了新的文献求助10
刚刚
科研小民工应助_呱_采纳,获得50
刚刚
愉快盼曼完成签到,获得积分20
刚刚
研友_VZG7GZ应助小狗同志006采纳,获得10
1秒前
123完成签到,获得积分10
1秒前
13679165979发布了新的文献求助10
2秒前
温暖的钻石完成签到,获得积分10
2秒前
科研通AI5应助赖道之采纳,获得10
2秒前
3秒前
苏卿应助Eric采纳,获得10
3秒前
思源应助hhzz采纳,获得10
4秒前
红红完成签到,获得积分10
7秒前
瑶一瑶发布了新的文献求助10
7秒前
NexusExplorer应助刘鹏宇采纳,获得10
7秒前
roselau完成签到,获得积分10
7秒前
yudandan@CJLU完成签到,获得积分10
8秒前
8秒前
半山完成签到,获得积分10
12秒前
吹泡泡的红豆完成签到 ,获得积分10
13秒前
研友_89eBO8完成签到 ,获得积分10
13秒前
隐形曼青应助ZeJ采纳,获得10
13秒前
13秒前
隐形曼青应助温暖的钻石采纳,获得10
14秒前
Khr1stINK发布了新的文献求助10
15秒前
123cxj发布了新的文献求助10
16秒前
星辰大海应助红红采纳,获得10
16秒前
sweetbearm应助小周采纳,获得10
17秒前
科研通AI5应助赖道之采纳,获得10
17秒前
18秒前
HonamC完成签到,获得积分10
19秒前
十三十四十五完成签到,获得积分10
20秒前
潇洒的问夏完成签到 ,获得积分10
22秒前
无声瀑布完成签到,获得积分10
22秒前
Bingtao_Lian完成签到 ,获得积分10
23秒前
小布丁完成签到 ,获得积分10
23秒前
竹筏过海应助季生采纳,获得30
24秒前
25秒前
buno应助22采纳,获得10
26秒前
赘婿应助TT采纳,获得10
27秒前
27秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808