Evaluation and Prediction of Topsoil organic carbon using Machine learning and hybrid models at a Field-scale

环境科学 土壤碳 土壤科学 表土 土壤水分 比例(比率) 计算机科学 人工神经网络 数字土壤制图 土壤有机质
作者
Hamid Reza Matinfar,Ziba Maghsodi,Sayed Roholla Mousavi,Asghar Rahmani
出处
期刊:Catena [Elsevier]
卷期号:202: 105258- 被引量:4
标识
DOI:10.1016/j.catena.2021.105258
摘要

Abstract Digital mapping of soil organic carbon (SOC) is crucial to evaluate its spatial variability and also to assess environmental factors controlling it at field scale. The current study was conducted to compare one statistical method include partial least squares regression (PLSR), four individual machine learning(ML) algorithms including random forest (RF), quantile regression forest (QRF), cubist (CB), fuzzy logic (SoLIM) along with two hybrid methods including the random forest-ordinary kriging (RF-OK) and quantile random regression forest-ordinary kriging (QRF-OK) to map SOC. A number of 146 soil samples (0–30 cm) were collected in Khorramabad plain (680 ha). For the quantitative evaluation of SOC spatial variability, two scenarios were considered to use remote sensing data (R) and a combination of geo-morphometric and remote sensing data (GR). The data randomly were split into 80% (117 points) for training and 20% (29 points) for validation. The model performances were evaluated by the statistical indices as the coefficient of determination (R2), root mean square error (RMSE). According to principal component analysis (PCA), nine covariates including transformed soil adjusted vegetation index (TSAVI), relative vegetation index (RVI), Band 10, Band 11,Digital Elevation Model (DEM), Standard height(Standard_he), Valley_Dep, terrain surface texture (texture), and terrain surface convexity (Convexity) were selected as the environmental predictors. Results showed that the hybrid model RF-OK (RMSE = 0.05and R2 = 0.93) and SoLIM model (RMSE = 0.47and R2 = 0.41) with scenario GR had the highest and lowest accurate respectively. TSAVI, DEM, and Band 10 were the most important predictors and explanation more than 50% of SOC spatial variability in the study area. Generally, using hybrid machine learning models in combination with geo-morphometric and remote sensing covariates make it possible to model and predict SOC with acceptable accurate in the field-scale croplands.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
单身的淇完成签到 ,获得积分10
刚刚
Rsoup完成签到,获得积分10
刚刚
不善良完成签到 ,获得积分10
1秒前
lxl完成签到,获得积分10
2秒前
石榴脆莆完成签到,获得积分10
2秒前
hhpxxy完成签到,获得积分10
2秒前
橘子海完成签到 ,获得积分10
3秒前
范森林完成签到 ,获得积分10
3秒前
如你所liao完成签到,获得积分10
4秒前
阳炎完成签到,获得积分10
4秒前
曾经碧蓉完成签到,获得积分10
4秒前
办公的牛马完成签到,获得积分10
4秒前
Pengcheng完成签到,获得积分10
4秒前
笑嘻嘻完成签到,获得积分10
5秒前
5秒前
5秒前
瓜兵是官爷完成签到,获得积分10
6秒前
cc完成签到,获得积分10
7秒前
风中的问柳完成签到,获得积分10
7秒前
老迟到的可兰完成签到,获得积分10
7秒前
清脆圆子完成签到 ,获得积分10
7秒前
汐鹿完成签到,获得积分10
7秒前
冯宇完成签到,获得积分10
8秒前
背完单词好睡觉完成签到 ,获得积分0
8秒前
午木完成签到,获得积分10
8秒前
mark完成签到,获得积分10
8秒前
正直的雨双完成签到,获得积分10
8秒前
李健应助croiss采纳,获得10
9秒前
科研蠢狗完成签到,获得积分10
9秒前
Yuki完成签到,获得积分10
9秒前
1111完成签到,获得积分10
9秒前
啦哈啦哈啦完成签到,获得积分10
9秒前
songyl完成签到,获得积分10
10秒前
10秒前
x_x完成签到,获得积分10
10秒前
fanch1122完成签到,获得积分10
11秒前
mryun完成签到,获得积分10
11秒前
bingo完成签到,获得积分10
11秒前
11秒前
简单的可乐完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
化妆品原料学 1000
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5645277
求助须知:如何正确求助?哪些是违规求助? 4768340
关于积分的说明 15027650
捐赠科研通 4803859
什么是DOI,文献DOI怎么找? 2568523
邀请新用户注册赠送积分活动 1525813
关于科研通互助平台的介绍 1485484