Evaluation and Prediction of Topsoil organic carbon using Machine learning and hybrid models at a Field-scale

环境科学 土壤碳 土壤科学 表土 土壤水分 比例(比率) 计算机科学 人工神经网络 数字土壤制图 土壤有机质
作者
Hamid Reza Matinfar,Ziba Maghsodi,Sayed Roholla Mousavi,Asghar Rahmani
出处
期刊:Catena [Elsevier BV]
卷期号:202: 105258- 被引量:4
标识
DOI:10.1016/j.catena.2021.105258
摘要

Abstract Digital mapping of soil organic carbon (SOC) is crucial to evaluate its spatial variability and also to assess environmental factors controlling it at field scale. The current study was conducted to compare one statistical method include partial least squares regression (PLSR), four individual machine learning(ML) algorithms including random forest (RF), quantile regression forest (QRF), cubist (CB), fuzzy logic (SoLIM) along with two hybrid methods including the random forest-ordinary kriging (RF-OK) and quantile random regression forest-ordinary kriging (QRF-OK) to map SOC. A number of 146 soil samples (0–30 cm) were collected in Khorramabad plain (680 ha). For the quantitative evaluation of SOC spatial variability, two scenarios were considered to use remote sensing data (R) and a combination of geo-morphometric and remote sensing data (GR). The data randomly were split into 80% (117 points) for training and 20% (29 points) for validation. The model performances were evaluated by the statistical indices as the coefficient of determination (R2), root mean square error (RMSE). According to principal component analysis (PCA), nine covariates including transformed soil adjusted vegetation index (TSAVI), relative vegetation index (RVI), Band 10, Band 11,Digital Elevation Model (DEM), Standard height(Standard_he), Valley_Dep, terrain surface texture (texture), and terrain surface convexity (Convexity) were selected as the environmental predictors. Results showed that the hybrid model RF-OK (RMSE = 0.05and R2 = 0.93) and SoLIM model (RMSE = 0.47and R2 = 0.41) with scenario GR had the highest and lowest accurate respectively. TSAVI, DEM, and Band 10 were the most important predictors and explanation more than 50% of SOC spatial variability in the study area. Generally, using hybrid machine learning models in combination with geo-morphometric and remote sensing covariates make it possible to model and predict SOC with acceptable accurate in the field-scale croplands.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助小泽又沐风采纳,获得10
刚刚
mm发布了新的文献求助10
1秒前
18岁中二少年完成签到,获得积分10
1秒前
李白的白123完成签到,获得积分10
2秒前
3秒前
共享精神应助夜阑卧听采纳,获得10
4秒前
4秒前
卷卷完成签到 ,获得积分10
5秒前
英吉利25发布了新的文献求助10
6秒前
6秒前
8秒前
留白完成签到 ,获得积分10
8秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
顺利毕业完成签到,获得积分10
9秒前
准时毕业发布了新的文献求助10
9秒前
10秒前
陈芷慧关注了科研通微信公众号
12秒前
cyyyyyy发布了新的文献求助10
12秒前
conezyme完成签到,获得积分20
12秒前
13秒前
sunliying完成签到 ,获得积分10
13秒前
13秒前
曹孟馨发布了新的文献求助10
13秒前
Iridescent完成签到 ,获得积分10
13秒前
15秒前
15秒前
田恬完成签到,获得积分10
16秒前
16秒前
16秒前
沧海医僧笑完成签到,获得积分20
18秒前
Ava应助诡瞳GT采纳,获得10
19秒前
19秒前
20秒前
20秒前
20秒前
yutian完成签到,获得积分10
20秒前
liuyu0209发布了新的文献求助10
20秒前
饱满南松发布了新的文献求助30
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Technical Report No. 22 (Revised 2025): Process Simulation for Aseptically Filled Products 500
“Now I Have My Own Key”: The Impact of Housing Stability on Recovery and Recidivism Reduction Using a Recovery Capital Framework 500
PRINCIPLES OF BEHAVIORAL ECONOMICS Microeconomics & Human Behavior 400
The Red Peril Explained: Every Man, Woman & Child Affected 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5015531
求助须知:如何正确求助?哪些是违规求助? 4255927
关于积分的说明 13263035
捐赠科研通 4059770
什么是DOI,文献DOI怎么找? 2220432
邀请新用户注册赠送积分活动 1229731
关于科研通互助平台的介绍 1152364