Evaluation and Prediction of Topsoil organic carbon using Machine learning and hybrid models at a Field-scale

环境科学 土壤碳 土壤科学 表土 土壤水分 比例(比率) 计算机科学 人工神经网络 数字土壤制图 土壤有机质
作者
Hamid Reza Matinfar,Ziba Maghsodi,Sayed Roholla Mousavi,Asghar Rahmani
出处
期刊:Catena [Elsevier]
卷期号:202: 105258- 被引量:4
标识
DOI:10.1016/j.catena.2021.105258
摘要

Abstract Digital mapping of soil organic carbon (SOC) is crucial to evaluate its spatial variability and also to assess environmental factors controlling it at field scale. The current study was conducted to compare one statistical method include partial least squares regression (PLSR), four individual machine learning(ML) algorithms including random forest (RF), quantile regression forest (QRF), cubist (CB), fuzzy logic (SoLIM) along with two hybrid methods including the random forest-ordinary kriging (RF-OK) and quantile random regression forest-ordinary kriging (QRF-OK) to map SOC. A number of 146 soil samples (0–30 cm) were collected in Khorramabad plain (680 ha). For the quantitative evaluation of SOC spatial variability, two scenarios were considered to use remote sensing data (R) and a combination of geo-morphometric and remote sensing data (GR). The data randomly were split into 80% (117 points) for training and 20% (29 points) for validation. The model performances were evaluated by the statistical indices as the coefficient of determination (R2), root mean square error (RMSE). According to principal component analysis (PCA), nine covariates including transformed soil adjusted vegetation index (TSAVI), relative vegetation index (RVI), Band 10, Band 11,Digital Elevation Model (DEM), Standard height(Standard_he), Valley_Dep, terrain surface texture (texture), and terrain surface convexity (Convexity) were selected as the environmental predictors. Results showed that the hybrid model RF-OK (RMSE = 0.05and R2 = 0.93) and SoLIM model (RMSE = 0.47and R2 = 0.41) with scenario GR had the highest and lowest accurate respectively. TSAVI, DEM, and Band 10 were the most important predictors and explanation more than 50% of SOC spatial variability in the study area. Generally, using hybrid machine learning models in combination with geo-morphometric and remote sensing covariates make it possible to model and predict SOC with acceptable accurate in the field-scale croplands.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
松山小吏发布了新的文献求助10
刚刚
大黄发布了新的文献求助30
刚刚
lk发布了新的文献求助10
刚刚
ccc发布了新的文献求助10
1秒前
hzs发布了新的文献求助10
1秒前
卷饼发布了新的文献求助10
1秒前
怡然的寻桃完成签到,获得积分20
1秒前
量子星尘发布了新的文献求助10
2秒前
2秒前
3秒前
神经哈哈完成签到,获得积分10
3秒前
君临发布了新的文献求助10
3秒前
4秒前
慢慢发布了新的文献求助10
4秒前
5秒前
善学以致用应助ccc采纳,获得10
5秒前
阳阳完成签到,获得积分10
5秒前
xl完成签到 ,获得积分10
6秒前
求知的周发布了新的文献求助30
7秒前
meibeiwu关注了科研通微信公众号
7秒前
HZH发布了新的文献求助10
8秒前
小蘑菇完成签到 ,获得积分10
8秒前
nb小子发布了新的文献求助10
8秒前
8秒前
8秒前
9秒前
David发布了新的文献求助10
10秒前
团团完成签到,获得积分10
10秒前
zwx发布了新的文献求助10
11秒前
怡然的寻桃关注了科研通微信公众号
12秒前
今天炒鱿鱼完成签到,获得积分20
12秒前
电池小能手完成签到,获得积分10
13秒前
Bubble_bei完成签到 ,获得积分10
14秒前
董恋风完成签到,获得积分10
15秒前
大模型应助一一采纳,获得10
16秒前
16秒前
17秒前
海鑫王完成签到,获得积分10
18秒前
mao关注了科研通微信公众号
18秒前
Attendre完成签到 ,获得积分10
18秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5694761
求助须知:如何正确求助?哪些是违规求助? 5098681
关于积分的说明 15214483
捐赠科研通 4851292
什么是DOI,文献DOI怎么找? 2602253
邀请新用户注册赠送积分活动 1554141
关于科研通互助平台的介绍 1512049