Evaluation and Prediction of Topsoil organic carbon using Machine learning and hybrid models at a Field-scale

环境科学 土壤碳 土壤科学 表土 土壤水分 比例(比率) 计算机科学 人工神经网络 数字土壤制图 土壤有机质
作者
Hamid Reza Matinfar,Ziba Maghsodi,Sayed Roholla Mousavi,Asghar Rahmani
出处
期刊:Catena [Elsevier]
卷期号:202: 105258- 被引量:4
标识
DOI:10.1016/j.catena.2021.105258
摘要

Abstract Digital mapping of soil organic carbon (SOC) is crucial to evaluate its spatial variability and also to assess environmental factors controlling it at field scale. The current study was conducted to compare one statistical method include partial least squares regression (PLSR), four individual machine learning(ML) algorithms including random forest (RF), quantile regression forest (QRF), cubist (CB), fuzzy logic (SoLIM) along with two hybrid methods including the random forest-ordinary kriging (RF-OK) and quantile random regression forest-ordinary kriging (QRF-OK) to map SOC. A number of 146 soil samples (0–30 cm) were collected in Khorramabad plain (680 ha). For the quantitative evaluation of SOC spatial variability, two scenarios were considered to use remote sensing data (R) and a combination of geo-morphometric and remote sensing data (GR). The data randomly were split into 80% (117 points) for training and 20% (29 points) for validation. The model performances were evaluated by the statistical indices as the coefficient of determination (R2), root mean square error (RMSE). According to principal component analysis (PCA), nine covariates including transformed soil adjusted vegetation index (TSAVI), relative vegetation index (RVI), Band 10, Band 11,Digital Elevation Model (DEM), Standard height(Standard_he), Valley_Dep, terrain surface texture (texture), and terrain surface convexity (Convexity) were selected as the environmental predictors. Results showed that the hybrid model RF-OK (RMSE = 0.05and R2 = 0.93) and SoLIM model (RMSE = 0.47and R2 = 0.41) with scenario GR had the highest and lowest accurate respectively. TSAVI, DEM, and Band 10 were the most important predictors and explanation more than 50% of SOC spatial variability in the study area. Generally, using hybrid machine learning models in combination with geo-morphometric and remote sensing covariates make it possible to model and predict SOC with acceptable accurate in the field-scale croplands.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
温暖小松鼠完成签到 ,获得积分10
1秒前
孙泉关注了科研通微信公众号
4秒前
zhenzhen完成签到 ,获得积分10
4秒前
CodeCraft应助LN采纳,获得10
6秒前
6秒前
白白白发布了新的文献求助10
9秒前
lalala发布了新的文献求助10
9秒前
打打应助清新的寡妇采纳,获得10
9秒前
9秒前
量子力学完成签到,获得积分10
10秒前
10秒前
雨夜聆风完成签到,获得积分10
10秒前
青果发布了新的文献求助10
11秒前
lalala发布了新的文献求助10
11秒前
方语蕊完成签到 ,获得积分10
13秒前
珍妮完成签到,获得积分10
14秒前
贾晨鹤发布了新的文献求助10
14秒前
14秒前
vanshaw.vs发布了新的文献求助20
15秒前
16秒前
16秒前
wxnice完成签到,获得积分10
17秒前
年轻的凝云完成签到 ,获得积分10
18秒前
皮皮敏完成签到,获得积分20
19秒前
20秒前
20秒前
dizi_88发布了新的文献求助10
20秒前
我的miemie发布了新的文献求助10
20秒前
烟花应助lalala采纳,获得10
20秒前
宇文青寒完成签到,获得积分10
21秒前
Ge发布了新的文献求助10
21秒前
皮皮敏发布了新的文献求助10
22秒前
火星上小土豆完成签到 ,获得积分10
23秒前
曾经问玉完成签到,获得积分10
23秒前
甜蜜的灵凡完成签到,获得积分10
23秒前
李爱国应助青果采纳,获得10
24秒前
姚子敏完成签到,获得积分10
24秒前
舒心小海豚完成签到 ,获得积分10
25秒前
25秒前
25秒前
高分求助中
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
Die Gottesanbeterin: Mantis religiosa: 656 400
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3165183
求助须知:如何正确求助?哪些是违规求助? 2816187
关于积分的说明 7911845
捐赠科研通 2475930
什么是DOI,文献DOI怎么找? 1318423
科研通“疑难数据库(出版商)”最低求助积分说明 632143
版权声明 602388