亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Evaluation and Prediction of Topsoil organic carbon using Machine learning and hybrid models at a Field-scale

环境科学 土壤碳 土壤科学 表土 土壤水分 比例(比率) 计算机科学 人工神经网络 数字土壤制图 土壤有机质
作者
Hamid Reza Matinfar,Ziba Maghsodi,Sayed Roholla Mousavi,Asghar Rahmani
出处
期刊:Catena [Elsevier]
卷期号:202: 105258- 被引量:4
标识
DOI:10.1016/j.catena.2021.105258
摘要

Abstract Digital mapping of soil organic carbon (SOC) is crucial to evaluate its spatial variability and also to assess environmental factors controlling it at field scale. The current study was conducted to compare one statistical method include partial least squares regression (PLSR), four individual machine learning(ML) algorithms including random forest (RF), quantile regression forest (QRF), cubist (CB), fuzzy logic (SoLIM) along with two hybrid methods including the random forest-ordinary kriging (RF-OK) and quantile random regression forest-ordinary kriging (QRF-OK) to map SOC. A number of 146 soil samples (0–30 cm) were collected in Khorramabad plain (680 ha). For the quantitative evaluation of SOC spatial variability, two scenarios were considered to use remote sensing data (R) and a combination of geo-morphometric and remote sensing data (GR). The data randomly were split into 80% (117 points) for training and 20% (29 points) for validation. The model performances were evaluated by the statistical indices as the coefficient of determination (R2), root mean square error (RMSE). According to principal component analysis (PCA), nine covariates including transformed soil adjusted vegetation index (TSAVI), relative vegetation index (RVI), Band 10, Band 11,Digital Elevation Model (DEM), Standard height(Standard_he), Valley_Dep, terrain surface texture (texture), and terrain surface convexity (Convexity) were selected as the environmental predictors. Results showed that the hybrid model RF-OK (RMSE = 0.05and R2 = 0.93) and SoLIM model (RMSE = 0.47and R2 = 0.41) with scenario GR had the highest and lowest accurate respectively. TSAVI, DEM, and Band 10 were the most important predictors and explanation more than 50% of SOC spatial variability in the study area. Generally, using hybrid machine learning models in combination with geo-morphometric and remote sensing covariates make it possible to model and predict SOC with acceptable accurate in the field-scale croplands.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
13秒前
16秒前
白华苍松发布了新的文献求助20
26秒前
37秒前
freyaaaaa应助科研通管家采纳,获得30
52秒前
52秒前
Lucas应助科研通管家采纳,获得10
52秒前
52秒前
Hello应助WWJ采纳,获得10
1分钟前
gszy1975完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
深情安青应助yumeini采纳,获得10
1分钟前
毛毛完成签到,获得积分10
2分钟前
kuoping完成签到,获得积分0
2分钟前
脑洞疼应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
freyaaaaa应助科研通管家采纳,获得30
2分钟前
3分钟前
无极微光应助白华苍松采纳,获得20
3分钟前
ericxu发布了新的文献求助10
3分钟前
ericxu完成签到,获得积分10
3分钟前
3分钟前
nenoaowu发布了新的文献求助10
3分钟前
Owen应助nenoaowu采纳,获得10
3分钟前
4分钟前
胡可完成签到 ,获得积分10
4分钟前
4分钟前
wzbc完成签到,获得积分10
4分钟前
4分钟前
积极的觅松完成签到 ,获得积分10
5分钟前
滕皓轩完成签到 ,获得积分10
5分钟前
无极微光应助白华苍松采纳,获得20
6分钟前
贤惠的白开水完成签到 ,获得积分10
6分钟前
瘦瘦的不可完成签到,获得积分20
6分钟前
freyaaaaa应助科研通管家采纳,获得30
6分钟前
6分钟前
7分钟前
yumeini发布了新的文献求助10
7分钟前
爆米花应助瘦瘦的不可采纳,获得10
7分钟前
无极微光应助白华苍松采纳,获得20
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1400
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Schlieren and Shadowgraph Techniques:Visualizing Phenomena in Transparent Media 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5515951
求助须知:如何正确求助?哪些是违规求助? 4609154
关于积分的说明 14514552
捐赠科研通 4545687
什么是DOI,文献DOI怎么找? 2490830
邀请新用户注册赠送积分活动 1472661
关于科研通互助平台的介绍 1444426