作者
Christelle Stéphanie Sonfack,Elvine Pami Nguelefack‐Mbuyo,Jacquy Joyce Wanche Kojom,Edwige Laure Lappa,Fernande Petingmve Peyembouo,Christian Kuete Fofié,Nolé Tsabang,Télesphore Benoît Nguelefack,Alain Bertrand Dongmo
摘要
Chronic kidney disease (CKD) is a serious health problem with high morbidity and mortality, mainly attributable to cardiovascular risk. Garcinia lucida is traditionally used in Cameroon for the management of cardiovascular diseases. The aim of this study was to evaluate the cardioprotective and nephroprotective effects of the aqueous extract from the stem bark of G. lucida (AEGL). The in vitro antioxidant effect of AEGL was assessed at concentrations ranging 1–300 μg/mL against DPPH, lipid peroxidation, and AAPH-induced hemolysis. The reducing power and phenolic and flavonoids contents were also determined. CKD was induced by intraperitoneal bolus injection of adenine (50 mg/kg/day) for 4 consecutive weeks to male Wistar rats. AEGL (150 and 300 mg/kg/day) or captopril (20 mg/kg/day) was concomitantly administered with adenine per os. Bodyweight and blood pressure were monitored at baseline and weekly during the test. At the end of the experiment, plasma creatinine, urea, AST, and ALT were quantified. Proteinuria, creatinine excretion, and creatinine clearance were also assessed. The effect on GSH, CAT, and SOD activity was evaluated in cardiac and renal homogenates. Sections of the heart and kidney were stained with hematoxylin and eosin. AEGL exhibited a potent in vitro antioxidant activity and was shown to possess a large amount of phenolic compounds. Adenine alone increased blood pressure, cardiac and kidney mass, proteinuria, protein to creatinine ratio, plasma creatinine, AST, and urea levels ( , 0.01, and 0.001). Besides, the bodyweight and creatinine clearance were significantly reduced ( and ). All these alterations were blunted by the plant extract, except the bodyweight loss. In addition, AEGL improved GSH levels and CAT and SOD activities. AEGL attenuated adenine-induced glomerular necrosis, tubular dilatation, and cardiac inflammation. AEGL exhibits cardioprotective and nephroprotective effects that may be ascribed to its antihypertensive and antioxidant activities.