Deep Learning for nasopharyngeal Carcinoma Identification Using Both White Light and Narrow-Band Imaging Endoscopy

医学 窄带成像 鼻咽癌 放射科 深度学习 内窥镜检查
作者
Jianwei Xu,Jun Wang,Xianzhang Bian,Ji-Qing Zhu,Cheng-Wei Tie,Xiaoqing Liu,Zhiyong Zhou,Xiaoguang Ni,Dahong Qian
出处
期刊:Laryngoscope [Wiley]
标识
DOI:10.1002/lary.29894
摘要

OBJECTIVES/HYPOTHESIS To develop a deep-learning-based automatic diagnosis system for identifying nasopharyngeal carcinoma (NPC) from noncancer (inflammation and hyperplasia), using both white light imaging (WLI) and narrow-band imaging (NBI) nasopharyngoscopy images. STUDY DESIGN Retrospective study. METHODS A total of 4,783 nasopharyngoscopy images (2,898 WLI and 1,885 NBI) of 671 patients were collected and a novel deep convolutional neural network (DCNN) framework was developed named Siamese deep convolutional neural network (S-DCNN), which can simultaneously utilize WLI and NBI images to improve the classification performance. To verify the effectiveness of combining the above-mentioned two modal images for prediction, we compared the proposed S-DCNN with two baseline models, namely DCNN-1 (only considering WLI images) and DCNN-2 (only considering NBI images). RESULTS In the threefold cross-validation, an overall accuracy and area under the curve of the three DCNNs achieved 94.9% (95% confidence interval [CI] 93.3%-96.5%) and 0.986 (95% CI 0.982-0.992), 87.0% (95% CI 84.2%-89.7%) and 0.930 (95% CI 0.906-0.961), and 92.8% (95% CI 90.4%-95.3%) and 0.971 (95% CI 0.953-0.992), respectively. The accuracy of S-DCNN is significantly improved compared with DCNN-1 (P-value <.001) and DCNN-2 (P-value = .008). CONCLUSION Using the deep-learning technology to automatically diagnose NPC under nasopharyngoscopy can provide valuable reference for NPC screening. Superior performance can be obtained by simultaneously utilizing the multimodal features of NBI image and WLI image of the same patient. LEVEL OF EVIDENCE 3 Laryngoscope, 2021.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丘比特应助小杰采纳,获得10
2秒前
2秒前
Sunsets完成签到 ,获得积分10
2秒前
3秒前
5秒前
橘猫ADD完成签到,获得积分10
5秒前
湖工大保卫处完成签到,获得积分10
6秒前
啦啦啦啦完成签到,获得积分10
8秒前
8秒前
8秒前
领导范儿应助Sheryl采纳,获得10
9秒前
CodeCraft应助橘猫ADD采纳,获得10
9秒前
看不懂完成签到,获得积分10
9秒前
SYLH应助MZ采纳,获得10
10秒前
10秒前
醉挽清风发布了新的文献求助10
11秒前
log发布了新的文献求助10
11秒前
李麟发布了新的文献求助10
11秒前
小马甲应助烂漫的雁开采纳,获得10
12秒前
温冰雪应助GSGSG采纳,获得10
13秒前
ruiruili发布了新的文献求助10
13秒前
ydfqlzj发布了新的文献求助10
13秒前
慕青应助宇宙无敌冲冲鸭采纳,获得10
14秒前
韩浩男发布了新的文献求助20
14秒前
华十三发布了新的文献求助10
14秒前
深情的采波完成签到,获得积分10
15秒前
羽客完成签到,获得积分10
15秒前
15秒前
znn完成签到,获得积分10
16秒前
17秒前
17秒前
Wn发布了新的文献求助10
17秒前
17秒前
19秒前
好好好完成签到,获得积分10
19秒前
19秒前
zho发布了新的文献求助10
19秒前
znn发布了新的文献求助10
20秒前
wwpedd发布了新的文献求助30
20秒前
20秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951173
求助须知:如何正确求助?哪些是违规求助? 3496521
关于积分的说明 11082942
捐赠科研通 3226974
什么是DOI,文献DOI怎么找? 1784145
邀请新用户注册赠送积分活动 868219
科研通“疑难数据库(出版商)”最低求助积分说明 801089