Band gap manipulation on P-wave propagating in functionally graded phononic crystal by periodical thermal field

多物理 带隙 超材料 材料科学 声学 衰减 声学超材料 领域(数学) 衍射 振动 光学 波传播 热的 物理 光电子学 有限元法 结构工程 工程类 气象学 纯数学 数学
作者
Xiaoliang Zhou,Yeli Sun,Shuai Yang,Zuguang Bian
出处
期刊:International Journal of Mechanical Sciences [Elsevier BV]
卷期号:212: 106817-106817 被引量:19
标识
DOI:10.1016/j.ijmecsci.2021.106817
摘要

Phononic crystals and acoustic metamaterials have attracted many researchers by reason of unconventional acoustic behaviors which can be applied to achieve wave propagation control. To enhance the application value of acoustic behaviors, period structures with adaptive control ability have been an investigation focus. In the present paper, an innovative manipulation method based on inhomogeneous and periodic thermal field for longitudinal wave (P-wave) band gap control is proposed and investigated. A three-dimensional solid model, consist of homogeneous thermal sensitive material, can be transferred into functionally graded phononic crystals by a series of metallic films which are periodically embedded in structure and play the role of heat sources. Based on laminated model and transfer matrix method, propagation characteristics of both normal incident and oblique incident P-wave in functionally graded crystals are investigated. Numerical band structure results from analytical method, validated by simulation result via COMSOL Multiphysics software and transmission spectra result, reveal that period thermal field owns the ability to affectively tune the band gap properties including band width and band gap location. Also, transmission spectra result indicates that the attenuation of wave propagation may be inconspicuous even there exists obvious but relatively narrow stop band gaps. The present research proposes a band gap tuning method on P-wave according to the application of period thermal field and may lay theoretical and simulation foundation for designing and fabrication of tunable vibration isolators and acoustic filters.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小聒完成签到 ,获得积分10
刚刚
科研通AI5应助wangjw采纳,获得10
刚刚
汉堡包应助冰西瓜最棒_采纳,获得10
刚刚
nuistd完成签到,获得积分10
1秒前
长琴思顾发布了新的文献求助10
1秒前
浮名半生完成签到,获得积分10
1秒前
1秒前
阿飘应助Dovahcode采纳,获得10
1秒前
jygjhgy完成签到,获得积分10
1秒前
2秒前
123b发布了新的文献求助10
2秒前
3秒前
细心平卉发布了新的文献求助10
3秒前
CipherSage应助shimly0101xx采纳,获得10
3秒前
JamesPei应助曙光森林采纳,获得10
4秒前
4秒前
Allen完成签到,获得积分10
4秒前
科研小刘完成签到,获得积分10
5秒前
百里千秋完成签到,获得积分10
5秒前
6秒前
6秒前
LCS发布了新的文献求助10
6秒前
6秒前
7秒前
小蘑菇应助xieyujie采纳,获得30
7秒前
8秒前
烟花应助科研通管家采纳,获得10
8秒前
桐桐应助科研通管家采纳,获得10
8秒前
科研通AI5应助帅逼采纳,获得10
8秒前
8R60d8应助科研通管家采纳,获得10
8秒前
斯文败类应助科研通管家采纳,获得10
8秒前
bkagyin应助科研通管家采纳,获得10
8秒前
8秒前
8R60d8应助科研通管家采纳,获得10
8秒前
zho应助科研通管家采纳,获得10
8秒前
TCR完成签到,获得积分10
8秒前
路路有为完成签到 ,获得积分10
9秒前
9秒前
9秒前
1021完成签到,获得积分10
9秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Animal Physiology 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3746550
求助须知:如何正确求助?哪些是违规求助? 3289414
关于积分的说明 10064441
捐赠科研通 3005751
什么是DOI,文献DOI怎么找? 1650393
邀请新用户注册赠送积分活动 785863
科研通“疑难数据库(出版商)”最低求助积分说明 751335