Predicting melting point of ionic liquids using QSPR approach: Literature review and new models

数量结构-活动关系 支持向量机 线性回归 适用范围 分子描述符 计算机科学 机器学习 人工智能 化学
作者
Kamil Paduszyński,Krzysztof Kłębowski,Marta Królikowska
出处
期刊:Journal of Molecular Liquids [Elsevier]
卷期号:344: 117631-117631 被引量:35
标识
DOI:10.1016/j.molliq.2021.117631
摘要

Quantitative structure–property relationships (QSPRs) for predicting melting point temperature (Tm) of ionic liquids (ILs) are reviewed and the new models are proposed by using the experimental data extracted from the literature for 953 salts. The models include both regression of Tm data and classification of the ILs with respect to their state of matter (liquid/solid) at T=300 K. A variety of machine learning algorithms is applied, including: partial least squares regression, stepwise multiple linear regression, and a number of common classifiers (k-nearest neighbors, naive Bayes, linear discriminant analysis, support vector machines). An effect of the molecular descriptors set as well as the computational level used for the ions’ geometry optimization is analyzed and followed in the final model selection protocol, which comprises all the standard steps of good practice of QSRP modeling, e.g. cross-validation, external validation, and the applicability domain analysis. Furthermore, as a key novelty, the robustness of the models is checked for different combining rules, defined as the averaging functions for obtaining the descriptors of ILs from those given for individual ions. The finally selected and recommended models are discussed in detail in terms of various statistics, as well as addressed to other methods reported in the literature. An effect of the chemical family of both cation and anion on the modeling performance is highlighted. Additionally, the predictions of both Tm and state of matter of more than 35,000 virtual cation–anion combinations are given in order to present the range of potential applications of the new methods in computer-aided molecular design of new ILs displaying demanded phase behavior.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
红黄蓝完成签到 ,获得积分10
2秒前
爪爪完成签到,获得积分10
3秒前
zhao完成签到,获得积分10
3秒前
wang完成签到,获得积分10
3秒前
西瓜茶完成签到 ,获得积分10
3秒前
qqww完成签到,获得积分10
3秒前
3秒前
4秒前
jiysh完成签到,获得积分10
5秒前
阿来哈哈发布了新的文献求助10
5秒前
5秒前
csy发布了新的文献求助10
5秒前
FashionBoy应助shuzi采纳,获得10
6秒前
小蘑菇应助阳光的芯采纳,获得30
6秒前
WYang完成签到,获得积分10
6秒前
苏苏完成签到,获得积分20
6秒前
qqww发布了新的文献求助10
7秒前
cmyohh完成签到 ,获得积分10
7秒前
荆棘鸟完成签到 ,获得积分10
7秒前
义气的一德完成签到,获得积分10
8秒前
不回首完成签到 ,获得积分10
8秒前
鲤鱼灵阳完成签到,获得积分10
8秒前
哈利波特完成签到,获得积分10
8秒前
小小狗完成签到,获得积分10
9秒前
迷路的糜完成签到,获得积分10
9秒前
甘甘发布了新的文献求助10
9秒前
苏苏发布了新的文献求助10
10秒前
调研昵称发布了新的文献求助10
10秒前
10秒前
单身的金鱼完成签到 ,获得积分10
11秒前
高贵路灯完成签到,获得积分10
12秒前
不安雪一发布了新的文献求助10
13秒前
13秒前
称心不尤完成签到 ,获得积分10
14秒前
14秒前
李_小_八完成签到,获得积分10
15秒前
踏实的酸奶完成签到,获得积分10
15秒前
拼搏绿柳完成签到,获得积分10
17秒前
Alina完成签到 ,获得积分10
19秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3455799
求助须知:如何正确求助?哪些是违规求助? 3051062
关于积分的说明 9024129
捐赠科研通 2739735
什么是DOI,文献DOI怎么找? 1502935
科研通“疑难数据库(出版商)”最低求助积分说明 694666
邀请新用户注册赠送积分活动 693460