亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Predicting melting point of ionic liquids using QSPR approach: Literature review and new models

数量结构-活动关系 支持向量机 线性回归 适用范围 分子描述符 计算机科学 机器学习 人工智能 化学
作者
Kamil Paduszyński,Krzysztof Kłębowski,Marta Królikowska
出处
期刊:Journal of Molecular Liquids [Elsevier]
卷期号:344: 117631-117631 被引量:35
标识
DOI:10.1016/j.molliq.2021.117631
摘要

Quantitative structure–property relationships (QSPRs) for predicting melting point temperature (Tm) of ionic liquids (ILs) are reviewed and the new models are proposed by using the experimental data extracted from the literature for 953 salts. The models include both regression of Tm data and classification of the ILs with respect to their state of matter (liquid/solid) at T=300 K. A variety of machine learning algorithms is applied, including: partial least squares regression, stepwise multiple linear regression, and a number of common classifiers (k-nearest neighbors, naive Bayes, linear discriminant analysis, support vector machines). An effect of the molecular descriptors set as well as the computational level used for the ions’ geometry optimization is analyzed and followed in the final model selection protocol, which comprises all the standard steps of good practice of QSRP modeling, e.g. cross-validation, external validation, and the applicability domain analysis. Furthermore, as a key novelty, the robustness of the models is checked for different combining rules, defined as the averaging functions for obtaining the descriptors of ILs from those given for individual ions. The finally selected and recommended models are discussed in detail in terms of various statistics, as well as addressed to other methods reported in the literature. An effect of the chemical family of both cation and anion on the modeling performance is highlighted. Additionally, the predictions of both Tm and state of matter of more than 35,000 virtual cation–anion combinations are given in order to present the range of potential applications of the new methods in computer-aided molecular design of new ILs displaying demanded phase behavior.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
七少爷发布了新的文献求助10
5秒前
大个应助怕孤独的迎波采纳,获得20
6秒前
7秒前
7秒前
科研农农完成签到,获得积分20
7秒前
鱼乐乐完成签到,获得积分10
10秒前
YanZhe完成签到,获得积分10
12秒前
嘉子完成签到 ,获得积分10
16秒前
17秒前
orixero应助忽而今夏采纳,获得10
17秒前
19秒前
MINICHI发布了新的文献求助10
22秒前
22秒前
kdjm688完成签到,获得积分10
22秒前
28秒前
28秒前
32秒前
哭泣的灵煌完成签到,获得积分10
33秒前
忽而今夏发布了新的文献求助10
33秒前
CipherSage应助科研通管家采纳,获得10
33秒前
36秒前
忽而今夏完成签到,获得积分10
39秒前
41秒前
43秒前
无花果应助周8相见采纳,获得10
44秒前
WXKennyS发布了新的文献求助10
49秒前
absb完成签到,获得积分20
51秒前
WXKennyS完成签到,获得积分10
54秒前
56秒前
jerry完成签到,获得积分10
56秒前
糖豆子完成签到,获得积分10
58秒前
Demi_Ming完成签到,获得积分10
1分钟前
Moo5_zzZ发布了新的文献求助30
1分钟前
Anjou发布了新的文献求助30
1分钟前
充电宝应助ceeray23采纳,获得20
1分钟前
袁青寒发布了新的文献求助10
1分钟前
碧蓝满天完成签到 ,获得积分10
1分钟前
cy0824完成签到 ,获得积分10
1分钟前
要减肥的春天完成签到,获得积分10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 2000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5356495
求助须知:如何正确求助?哪些是违规求助? 4488283
关于积分的说明 13971930
捐赠科研通 4389157
什么是DOI,文献DOI怎么找? 2411416
邀请新用户注册赠送积分活动 1403956
关于科研通互助平台的介绍 1377862