Predicting melting point of ionic liquids using QSPR approach: Literature review and new models

数量结构-活动关系 支持向量机 线性回归 适用范围 分子描述符 计算机科学 机器学习 人工智能 化学
作者
Kamil Paduszyński,Krzysztof Kłębowski,Marta Królikowska
出处
期刊:Journal of Molecular Liquids [Elsevier BV]
卷期号:344: 117631-117631 被引量:35
标识
DOI:10.1016/j.molliq.2021.117631
摘要

Quantitative structure–property relationships (QSPRs) for predicting melting point temperature (Tm) of ionic liquids (ILs) are reviewed and the new models are proposed by using the experimental data extracted from the literature for 953 salts. The models include both regression of Tm data and classification of the ILs with respect to their state of matter (liquid/solid) at T=300 K. A variety of machine learning algorithms is applied, including: partial least squares regression, stepwise multiple linear regression, and a number of common classifiers (k-nearest neighbors, naive Bayes, linear discriminant analysis, support vector machines). An effect of the molecular descriptors set as well as the computational level used for the ions’ geometry optimization is analyzed and followed in the final model selection protocol, which comprises all the standard steps of good practice of QSRP modeling, e.g. cross-validation, external validation, and the applicability domain analysis. Furthermore, as a key novelty, the robustness of the models is checked for different combining rules, defined as the averaging functions for obtaining the descriptors of ILs from those given for individual ions. The finally selected and recommended models are discussed in detail in terms of various statistics, as well as addressed to other methods reported in the literature. An effect of the chemical family of both cation and anion on the modeling performance is highlighted. Additionally, the predictions of both Tm and state of matter of more than 35,000 virtual cation–anion combinations are given in order to present the range of potential applications of the new methods in computer-aided molecular design of new ILs displaying demanded phase behavior.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
大大的寄吧完成签到,获得积分10
2秒前
2秒前
优美的明辉完成签到 ,获得积分10
2秒前
2秒前
白江虎发布了新的文献求助10
3秒前
十一发布了新的文献求助10
3秒前
lqtnb发布了新的文献求助10
4秒前
嘻嘻发布了新的文献求助10
4秒前
5秒前
5秒前
7秒前
genius_yue发布了新的文献求助30
9秒前
9秒前
10秒前
10秒前
QQ星发布了新的文献求助10
11秒前
Tao2023发布了新的文献求助10
11秒前
11秒前
znlion完成签到,获得积分10
12秒前
玛卡巴卡发布了新的文献求助10
13秒前
lqtnb完成签到,获得积分10
13秒前
14秒前
浮游应助CXS采纳,获得30
15秒前
17秒前
17秒前
18秒前
xxfsx应助flysky120采纳,获得10
19秒前
HUuu完成签到,获得积分10
20秒前
雷金炜完成签到,获得积分10
20秒前
21秒前
22秒前
Avvei完成签到,获得积分10
23秒前
24秒前
传奇3应助雷雷采纳,获得10
24秒前
shkknx发布了新的文献求助10
25秒前
浮游应助suda采纳,获得10
25秒前
充电宝应助无奈的访波采纳,获得10
26秒前
耍酷弱发布了新的文献求助10
26秒前
26秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5208817
求助须知:如何正确求助?哪些是违规求助? 4386099
关于积分的说明 13660012
捐赠科研通 4245182
什么是DOI,文献DOI怎么找? 2329154
邀请新用户注册赠送积分活动 1326960
关于科研通互助平台的介绍 1279228