Interpretable convolutional sparse coding method of Lamb waves for damage identification and localization

可解释性 兰姆波 计算机科学 模式识别(心理学) 结构健康监测 人工智能 鉴定(生物学) 波形 算法 卷积神经网络 工程类 表面波 电信 结构工程 生物 植物 雷达
作者
Han Zhang,Jing Lin,Jiadong Hua,Tong Tong
出处
期刊:Structural Health Monitoring-an International Journal [SAGE Publishing]
卷期号:21 (4): 1790-1804 被引量:14
标识
DOI:10.1177/14759217211044806
摘要

Lamb wave-based damage identification and localization methods hold the potential for nondestructive evaluation and structural health monitoring. Dispersive and multimodal characteristics lead to complicated Lamb wave signals that are challenging to be analyzed. Deep learning architectures could identify damage-related features effectively. Convolutional neural network (CNN) is a promising architecture that has been widely applied in recent years. However, this data-driven approach still lacks a certain degree of physical interpretability and requires a large number of parameters. In this article, an interpretable Lamb wave convolutional sparse coding (LW-CSC) method is proposed for structural damage identification and localization. First, toneburst signals at different center frequencies are considered in the first convolutional layer. The network convolves the waveforms with a set of parametrized functions that implement band-pass filters, which performs more physical interpretability compared to conventional CNN model. Subsequently, the damage features are extracted according to the multi-layer iterative soft thresholding algorithm for multi-layer CSC model, which could realize a deeper network without adding parameters unlike CNN. Finally, Lamb wave-based damage localization is visualized using an imaging algorithm. The experimental results demonstrate that the proposed method not only enables improvement of the classification accuracy but also achieves structural damage localization accurately.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乐乐应助Roses采纳,获得10
3秒前
CAOHOU应助余航采纳,获得10
3秒前
Lsyii发布了新的文献求助10
3秒前
爆米花应助Iceberg采纳,获得10
4秒前
认真的傲柏完成签到,获得积分20
12秒前
冷傲半邪发布了新的文献求助60
12秒前
Lsyii完成签到,获得积分10
13秒前
15秒前
一只鱼完成签到,获得积分10
16秒前
18秒前
完美世界应助哈哈哈嗝采纳,获得10
21秒前
NexusExplorer应助糟糕的夏云采纳,获得10
21秒前
21秒前
24秒前
桐桐应助皓月星辰采纳,获得10
25秒前
高大田应助韩凡采纳,获得10
26秒前
26秒前
一只鱼发布了新的文献求助10
26秒前
DrDaiJune完成签到,获得积分10
27秒前
李健应助开心跳跳糖采纳,获得10
28秒前
JQM发布了新的文献求助10
28秒前
29秒前
郑zz完成签到,获得积分20
29秒前
核桃发布了新的文献求助10
31秒前
科研公主完成签到,获得积分10
31秒前
。。。完成签到,获得积分10
32秒前
32秒前
33秒前
郑zz发布了新的文献求助10
33秒前
wyz发布了新的文献求助10
34秒前
35秒前
今天心情好朋友完成签到 ,获得积分10
36秒前
36秒前
哈哈哈嗝发布了新的文献求助10
37秒前
38秒前
美丽小蕾完成签到,获得积分20
39秒前
ding应助蜗牛星星采纳,获得10
40秒前
大模型应助Self-made采纳,获得10
40秒前
40秒前
情怀应助alvin采纳,获得10
42秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962406
求助须知:如何正确求助?哪些是违规求助? 3508495
关于积分的说明 11141261
捐赠科研通 3241177
什么是DOI,文献DOI怎么找? 1791399
邀请新用户注册赠送积分活动 872861
科研通“疑难数据库(出版商)”最低求助积分说明 803396