Interpretable convolutional sparse coding method of Lamb waves for damage identification and localization

可解释性 兰姆波 计算机科学 模式识别(心理学) 结构健康监测 人工智能 鉴定(生物学) 波形 算法 卷积神经网络 工程类 表面波 电信 结构工程 生物 植物 雷达
作者
Han Zhang,Jing Lin,Jiadong Hua,Tong Tong
出处
期刊:Structural Health Monitoring-an International Journal [SAGE]
卷期号:21 (4): 1790-1804 被引量:14
标识
DOI:10.1177/14759217211044806
摘要

Lamb wave-based damage identification and localization methods hold the potential for nondestructive evaluation and structural health monitoring. Dispersive and multimodal characteristics lead to complicated Lamb wave signals that are challenging to be analyzed. Deep learning architectures could identify damage-related features effectively. Convolutional neural network (CNN) is a promising architecture that has been widely applied in recent years. However, this data-driven approach still lacks a certain degree of physical interpretability and requires a large number of parameters. In this article, an interpretable Lamb wave convolutional sparse coding (LW-CSC) method is proposed for structural damage identification and localization. First, toneburst signals at different center frequencies are considered in the first convolutional layer. The network convolves the waveforms with a set of parametrized functions that implement band-pass filters, which performs more physical interpretability compared to conventional CNN model. Subsequently, the damage features are extracted according to the multi-layer iterative soft thresholding algorithm for multi-layer CSC model, which could realize a deeper network without adding parameters unlike CNN. Finally, Lamb wave-based damage localization is visualized using an imaging algorithm. The experimental results demonstrate that the proposed method not only enables improvement of the classification accuracy but also achieves structural damage localization accurately.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
古娜拉黑暗之神完成签到,获得积分20
刚刚
ouLniM完成签到 ,获得积分10
刚刚
ww完成签到 ,获得积分10
刚刚
1秒前
Dr_guo发布了新的文献求助10
1秒前
米糊发布了新的文献求助10
1秒前
shanshui完成签到,获得积分10
1秒前
David发布了新的文献求助10
2秒前
斯文败类应助dgqz采纳,获得10
2秒前
Lucas应助纯真的灵珊采纳,获得10
2秒前
李爱国应助小千采纳,获得10
2秒前
2秒前
笨笨的从云关注了科研通微信公众号
3秒前
高成浩发布了新的文献求助10
3秒前
MZR_1ST发布了新的文献求助10
4秒前
5秒前
FashionBoy应助科研小飞侠采纳,获得30
5秒前
6秒前
淡然沛儿发布了新的文献求助20
7秒前
7秒前
忧心的藏鸟完成签到 ,获得积分10
7秒前
zhaomr完成签到,获得积分10
7秒前
8秒前
8秒前
窝是喵星人完成签到,获得积分10
8秒前
8秒前
8秒前
华仔应助太叔开山采纳,获得10
9秒前
刘大力完成签到,获得积分10
9秒前
宋振光发布了新的文献求助10
10秒前
醒醒完成签到 ,获得积分10
10秒前
故意的成危完成签到,获得积分20
11秒前
海比天蓝发布了新的文献求助10
11秒前
11秒前
隐形曼青应助shadow采纳,获得10
12秒前
12秒前
12秒前
哇啦啦发布了新的文献求助10
12秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5507945
求助须知:如何正确求助?哪些是违规求助? 4603407
关于积分的说明 14485334
捐赠科研通 4537440
什么是DOI,文献DOI怎么找? 2486673
邀请新用户注册赠送积分活动 1469203
关于科研通互助平台的介绍 1441568