Interpretable convolutional sparse coding method of Lamb waves for damage identification and localization

可解释性 兰姆波 计算机科学 模式识别(心理学) 结构健康监测 人工智能 鉴定(生物学) 波形 算法 卷积神经网络 工程类 表面波 电信 结构工程 生物 植物 雷达
作者
Han Zhang,Jing Lin,Jiadong Hua,Tong Tong
出处
期刊:Structural Health Monitoring-an International Journal [SAGE]
卷期号:21 (4): 1790-1804 被引量:14
标识
DOI:10.1177/14759217211044806
摘要

Lamb wave-based damage identification and localization methods hold the potential for nondestructive evaluation and structural health monitoring. Dispersive and multimodal characteristics lead to complicated Lamb wave signals that are challenging to be analyzed. Deep learning architectures could identify damage-related features effectively. Convolutional neural network (CNN) is a promising architecture that has been widely applied in recent years. However, this data-driven approach still lacks a certain degree of physical interpretability and requires a large number of parameters. In this article, an interpretable Lamb wave convolutional sparse coding (LW-CSC) method is proposed for structural damage identification and localization. First, toneburst signals at different center frequencies are considered in the first convolutional layer. The network convolves the waveforms with a set of parametrized functions that implement band-pass filters, which performs more physical interpretability compared to conventional CNN model. Subsequently, the damage features are extracted according to the multi-layer iterative soft thresholding algorithm for multi-layer CSC model, which could realize a deeper network without adding parameters unlike CNN. Finally, Lamb wave-based damage localization is visualized using an imaging algorithm. The experimental results demonstrate that the proposed method not only enables improvement of the classification accuracy but also achieves structural damage localization accurately.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
飞飞发布了新的文献求助10
1秒前
田様应助蒋蒋采纳,获得10
2秒前
saikun发布了新的文献求助10
4秒前
LLL关注了科研通微信公众号
5秒前
赵吉思汗完成签到,获得积分10
5秒前
5秒前
waws完成签到,获得积分10
5秒前
5秒前
Boren完成签到,获得积分10
6秒前
zero完成签到,获得积分10
7秒前
难过的一一完成签到,获得积分10
9秒前
wu完成签到,获得积分10
9秒前
慕青应助正直白开水采纳,获得10
9秒前
良辰应助真实的青曼采纳,获得10
9秒前
10秒前
syk应助自然白安采纳,获得10
11秒前
浮生若梦发布了新的文献求助30
11秒前
科研通AI2S应助慕灵薇采纳,获得10
12秒前
星河zp完成签到 ,获得积分10
12秒前
马天行完成签到,获得积分10
13秒前
JamesPei应助Hu采纳,获得10
13秒前
14秒前
何飞关注了科研通微信公众号
15秒前
16秒前
16秒前
waayu发布了新的文献求助10
19秒前
21秒前
只强完成签到,获得积分10
21秒前
三杠发布了新的文献求助10
22秒前
LLL发布了新的文献求助10
22秒前
24秒前
26秒前
慕青应助waayu采纳,获得10
26秒前
浮生若梦完成签到,获得积分10
27秒前
ding应助陈陈陈采纳,获得10
27秒前
28秒前
慕灵薇完成签到,获得积分10
28秒前
28秒前
30秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3309767
求助须知:如何正确求助?哪些是违规求助? 2943014
关于积分的说明 8512004
捐赠科研通 2618059
什么是DOI,文献DOI怎么找? 1430795
科研通“疑难数据库(出版商)”最低求助积分说明 664310
邀请新用户注册赠送积分活动 649468