Interpretable convolutional sparse coding method of Lamb waves for damage identification and localization

可解释性 兰姆波 计算机科学 模式识别(心理学) 结构健康监测 人工智能 鉴定(生物学) 波形 算法 卷积神经网络 工程类 表面波 电信 结构工程 生物 植物 雷达
作者
Han Zhang,Jing Lin,Jiadong Hua,Tong Tong
出处
期刊:Structural Health Monitoring-an International Journal [SAGE]
卷期号:21 (4): 1790-1804 被引量:14
标识
DOI:10.1177/14759217211044806
摘要

Lamb wave-based damage identification and localization methods hold the potential for nondestructive evaluation and structural health monitoring. Dispersive and multimodal characteristics lead to complicated Lamb wave signals that are challenging to be analyzed. Deep learning architectures could identify damage-related features effectively. Convolutional neural network (CNN) is a promising architecture that has been widely applied in recent years. However, this data-driven approach still lacks a certain degree of physical interpretability and requires a large number of parameters. In this article, an interpretable Lamb wave convolutional sparse coding (LW-CSC) method is proposed for structural damage identification and localization. First, toneburst signals at different center frequencies are considered in the first convolutional layer. The network convolves the waveforms with a set of parametrized functions that implement band-pass filters, which performs more physical interpretability compared to conventional CNN model. Subsequently, the damage features are extracted according to the multi-layer iterative soft thresholding algorithm for multi-layer CSC model, which could realize a deeper network without adding parameters unlike CNN. Finally, Lamb wave-based damage localization is visualized using an imaging algorithm. The experimental results demonstrate that the proposed method not only enables improvement of the classification accuracy but also achieves structural damage localization accurately.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助wdy采纳,获得10
刚刚
科研通AI6应助fan采纳,获得10
刚刚
量子星尘发布了新的文献求助10
刚刚
wulala发布了新的文献求助10
刚刚
111发布了新的文献求助20
1秒前
1秒前
1秒前
Jasper应助落寞灵安采纳,获得10
2秒前
何东玲完成签到,获得积分20
3秒前
你学习了吗我学不了一点完成签到,获得积分10
4秒前
求助人员应助sj采纳,获得10
4秒前
科研通AI6应助Lyy采纳,获得10
4秒前
伊人不羁完成签到 ,获得积分10
5秒前
5秒前
6秒前
潇洒面包完成签到,获得积分20
6秒前
华仔应助cjh采纳,获得10
6秒前
morena发布了新的文献求助20
6秒前
诚心的飞扬应助花叶随我采纳,获得10
7秒前
7秒前
7秒前
WF完成签到,获得积分10
7秒前
7秒前
科研通AI6应助queer采纳,获得10
8秒前
潇洒面包发布了新的文献求助20
9秒前
9秒前
丁丁丁完成签到 ,获得积分10
9秒前
土木老狗发布了新的文献求助10
9秒前
9秒前
LLLLLLLL应助777采纳,获得10
10秒前
z7777777发布了新的文献求助10
10秒前
漂亮飞凤发布了新的文献求助10
11秒前
11秒前
12秒前
香蕉觅云应助ddddyooo采纳,获得10
13秒前
14秒前
量子星尘发布了新的文献求助10
14秒前
15秒前
15秒前
Jasper应助Accpted河豚采纳,获得10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Linear and Nonlinear Functional Analysis with Applications, Second Edition 388
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5577902
求助须知:如何正确求助?哪些是违规求助? 4662960
关于积分的说明 14743852
捐赠科研通 4603592
什么是DOI,文献DOI怎么找? 2526534
邀请新用户注册赠送积分活动 1496172
关于科研通互助平台的介绍 1465642