Interpretable convolutional sparse coding method of Lamb waves for damage identification and localization

可解释性 兰姆波 计算机科学 模式识别(心理学) 结构健康监测 人工智能 鉴定(生物学) 波形 算法 卷积神经网络 工程类 表面波 电信 结构工程 生物 植物 雷达
作者
Han Zhang,Jing Lin,Jiadong Hua,Tong Tong
出处
期刊:Structural Health Monitoring-an International Journal [SAGE]
卷期号:21 (4): 1790-1804 被引量:14
标识
DOI:10.1177/14759217211044806
摘要

Lamb wave-based damage identification and localization methods hold the potential for nondestructive evaluation and structural health monitoring. Dispersive and multimodal characteristics lead to complicated Lamb wave signals that are challenging to be analyzed. Deep learning architectures could identify damage-related features effectively. Convolutional neural network (CNN) is a promising architecture that has been widely applied in recent years. However, this data-driven approach still lacks a certain degree of physical interpretability and requires a large number of parameters. In this article, an interpretable Lamb wave convolutional sparse coding (LW-CSC) method is proposed for structural damage identification and localization. First, toneburst signals at different center frequencies are considered in the first convolutional layer. The network convolves the waveforms with a set of parametrized functions that implement band-pass filters, which performs more physical interpretability compared to conventional CNN model. Subsequently, the damage features are extracted according to the multi-layer iterative soft thresholding algorithm for multi-layer CSC model, which could realize a deeper network without adding parameters unlike CNN. Finally, Lamb wave-based damage localization is visualized using an imaging algorithm. The experimental results demonstrate that the proposed method not only enables improvement of the classification accuracy but also achieves structural damage localization accurately.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
包容仙人掌完成签到,获得积分10
3秒前
醉熏的伊完成签到,获得积分10
4秒前
z12发布了新的文献求助10
6秒前
布布拉拉完成签到,获得积分10
8秒前
8秒前
H2O完成签到,获得积分10
13秒前
13秒前
guandada完成签到 ,获得积分10
13秒前
刻苦羽毛发布了新的文献求助20
13秒前
张大侠完成签到 ,获得积分10
14秒前
Vicky完成签到,获得积分10
17秒前
17秒前
zhuan完成签到,获得积分10
18秒前
云水雾心发布了新的文献求助10
20秒前
桔梗完成签到 ,获得积分10
21秒前
sylvia完成签到,获得积分10
21秒前
22秒前
向钱看发布了新的文献求助10
22秒前
sunny完成签到 ,获得积分10
24秒前
莫问归期应助科研通管家采纳,获得10
25秒前
25秒前
25秒前
25秒前
赘婿应助科研通管家采纳,获得10
25秒前
CodeCraft应助科研通管家采纳,获得10
25秒前
tonyguo完成签到,获得积分10
26秒前
绿色催化完成签到,获得积分10
27秒前
xxy完成签到,获得积分10
27秒前
赘婿应助z12采纳,获得10
30秒前
卞旭东完成签到,获得积分10
31秒前
无畏完成签到,获得积分10
32秒前
兴奋小丸子完成签到,获得积分10
32秒前
犹豫代曼完成签到,获得积分10
32秒前
39秒前
畅快芝麻完成签到,获得积分10
39秒前
skysleeper完成签到,获得积分0
41秒前
乐乐应助刻苦羽毛采纳,获得10
41秒前
潇洒的天与完成签到,获得积分10
42秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5565231
求助须知:如何正确求助?哪些是违规求助? 4650088
关于积分的说明 14689720
捐赠科研通 4591964
什么是DOI,文献DOI怎么找? 2519415
邀请新用户注册赠送积分活动 1491925
关于科研通互助平台的介绍 1463159