Simulating Multiphase Flow in Reservoirs with Generative Deep Learning

多相流 计算机科学 储层模拟 流量(数学) 集合(抽象数据类型) 聚类分析 渠道化 人工智能 维数之咒 数据集 降维 机器学习 工程类 石油工程 数学 物理 几何学 电信 程序设计语言 量子力学
作者
Abdullah Alakeely,Roland N. Horne
标识
DOI:10.2118/206126-ms
摘要

Abstract This study investigated the ability to produce accurate multiphase flow profiles simulating the response of producing reservoirs, using Generative Deep Learning (GDL) methods. Historical production data from numerical simulators were used to train a GDL model that was then used to predict the output of new wells in unseen locations. This work describes a procedure in which data analysis techniques are used to gain insight into reservoir flow behavior at a field level based on existing historical data. The procedure includes clustering, dimensionality reduction, correlation, in addition to novel interpretation methodologies that synthesize the results from reservoir simulation output, characterizing flow conditions. The insight was then used to build and train a GDL algorithm that reproduces the multiphase reservoir behavior for unseen operational conditions with high accuracy. The trained algorithm can be used to further generate new predictions of the reservoir response under operational conditions for which we do not have previous examples in the training data set. We found that the GDL algorithm can be used as a robust multiphase flow simulator. In addition, we showed that the physics of flow can be captured and manipulated in the GDL latent space after training to reproduce different physical effects that did not exist in the original training data set. Applying the methodology to the problem of determining multiphase production rate from new producing wells in undrilled locations showed positive results. The methodology was tested successfully in predicting multiphase production under different scenarios including multiwell channelized and heterogeneous reservoirs. Comparison with other shallow supervised algorithms demonstrated improvements realized by the proposed methodology, compared to existing methods. The study developed a novel methodology to interpret both data and GDL algorithms, geared towards improving reservoir management. The method was able to predict the performance of new wells in previously undrilled locations without using a reservoir simulator.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
Jerome完成签到,获得积分20
3秒前
涣醒完成签到,获得积分10
3秒前
5秒前
学学术术小小白白完成签到,获得积分10
5秒前
今后应助玉f采纳,获得10
6秒前
6秒前
weiboo发布了新的文献求助10
6秒前
沉默梦易发布了新的文献求助10
10秒前
psycho完成签到,获得积分20
10秒前
RJ完成签到,获得积分10
11秒前
瓜瓜发布了新的文献求助10
11秒前
wufel2完成签到,获得积分10
11秒前
12秒前
jw完成签到,获得积分10
13秒前
hh10ve完成签到,获得积分10
13秒前
cavendipeng完成签到,获得积分10
14秒前
15秒前
Agao发布了新的文献求助10
15秒前
halona完成签到,获得积分10
16秒前
科研通AI2S应助psycho采纳,获得10
16秒前
Brian_Fang发布了新的文献求助10
17秒前
眞_完成签到 ,获得积分10
19秒前
wufel完成签到,获得积分10
20秒前
该干饭了完成签到 ,获得积分10
22秒前
踏雪无痕完成签到 ,获得积分10
22秒前
科研小白完成签到,获得积分10
23秒前
张振宇完成签到 ,获得积分10
23秒前
意签完成签到,获得积分10
24秒前
24秒前
林木完成签到,获得积分20
24秒前
32完成签到,获得积分10
27秒前
Emma完成签到 ,获得积分10
28秒前
桃子同学发布了新的文献求助10
30秒前
衣蝉完成签到 ,获得积分10
30秒前
weiweiwei完成签到,获得积分10
33秒前
受伤书文完成签到,获得积分10
33秒前
懒洋洋完成签到,获得积分10
34秒前
且听风吟完成签到 ,获得积分10
35秒前
37秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Semiconductor Process Reliability in Practice 1500
歯科矯正学 第7版(或第5版) 1004
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
中国区域地质志-山东志 560
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3242078
求助须知:如何正确求助?哪些是违规求助? 2886427
关于积分的说明 8243321
捐赠科研通 2555030
什么是DOI,文献DOI怎么找? 1383201
科研通“疑难数据库(出版商)”最低求助积分说明 649672
邀请新用户注册赠送积分活动 625417