Simulating Multiphase Flow in Reservoirs with Generative Deep Learning

多相流 计算机科学 储层模拟 流量(数学) 集合(抽象数据类型) 聚类分析 渠道化 人工智能 维数之咒 数据集 降维 机器学习 工程类 石油工程 数学 物理 几何学 电信 程序设计语言 量子力学
作者
Abdullah Alakeely,Roland N. Horne
标识
DOI:10.2118/206126-ms
摘要

Abstract This study investigated the ability to produce accurate multiphase flow profiles simulating the response of producing reservoirs, using Generative Deep Learning (GDL) methods. Historical production data from numerical simulators were used to train a GDL model that was then used to predict the output of new wells in unseen locations. This work describes a procedure in which data analysis techniques are used to gain insight into reservoir flow behavior at a field level based on existing historical data. The procedure includes clustering, dimensionality reduction, correlation, in addition to novel interpretation methodologies that synthesize the results from reservoir simulation output, characterizing flow conditions. The insight was then used to build and train a GDL algorithm that reproduces the multiphase reservoir behavior for unseen operational conditions with high accuracy. The trained algorithm can be used to further generate new predictions of the reservoir response under operational conditions for which we do not have previous examples in the training data set. We found that the GDL algorithm can be used as a robust multiphase flow simulator. In addition, we showed that the physics of flow can be captured and manipulated in the GDL latent space after training to reproduce different physical effects that did not exist in the original training data set. Applying the methodology to the problem of determining multiphase production rate from new producing wells in undrilled locations showed positive results. The methodology was tested successfully in predicting multiphase production under different scenarios including multiwell channelized and heterogeneous reservoirs. Comparison with other shallow supervised algorithms demonstrated improvements realized by the proposed methodology, compared to existing methods. The study developed a novel methodology to interpret both data and GDL algorithms, geared towards improving reservoir management. The method was able to predict the performance of new wells in previously undrilled locations without using a reservoir simulator.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
aabb关注了科研通微信公众号
4秒前
H1998完成签到,获得积分10
5秒前
RC_Wang完成签到,获得积分0
8秒前
modesty完成签到,获得积分10
9秒前
11秒前
CodeCraft应助ZZZ采纳,获得10
12秒前
遇上就这样吧应助H1998采纳,获得30
12秒前
13秒前
王冬雪发布了新的社区帖子
14秒前
155发布了新的文献求助10
15秒前
15秒前
16秒前
18秒前
18秒前
19秒前
fighting发布了新的文献求助10
20秒前
21秒前
知白完成签到 ,获得积分10
21秒前
21秒前
modesty发布了新的文献求助10
21秒前
hsing发布了新的文献求助10
22秒前
23秒前
aabb发布了新的文献求助30
24秒前
xiaofengche完成签到,获得积分10
25秒前
ZZZ发布了新的文献求助10
25秒前
25秒前
jenningseastera应助微微采纳,获得30
25秒前
26秒前
量子星尘发布了新的文献求助10
26秒前
27秒前
28秒前
112233发布了新的文献求助10
28秒前
yoesyte发布了新的文献求助30
29秒前
ZZZ完成签到,获得积分10
29秒前
小怂发布了新的文献求助10
30秒前
丘比特应助科学界的泰斗采纳,获得15
31秒前
32秒前
jiangmin0702发布了新的文献求助10
32秒前
32秒前
忧心的土豆完成签到,获得积分10
32秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952508
求助须知:如何正确求助?哪些是违规求助? 3497869
关于积分的说明 11089256
捐赠科研通 3228427
什么是DOI,文献DOI怎么找? 1784869
邀请新用户注册赠送积分活动 868943
科研通“疑难数据库(出版商)”最低求助积分说明 801309