亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A method of parameter estimation for cardiovascular hemodynamics based on deep learning and its application to personalize a reduced-order model.

计算机科学 血流动力学 人工智能 算法
作者
Yang Zhou,Yuan He,Wu Jianwei,Chang Cui,Minglong Chen,Beibei Sun
出处
期刊:International Journal for Numerical Methods in Biomedical Engineering [Wiley]
被引量:1
标识
DOI:10.1002/cnm.3533
摘要

Precise model personalization is a key step towards the application of cardiovascular physical models. In this manuscript, we propose to use deep learning (DL) to solve the parameter estimation problem in cardiovascular hemodynamics. Based on the convolutional neural network (CNN) and fully connected neural network (FCNN), a multi-input deep neural network (DNN) model is developed to map the nonlinear relationship between measurements and the parameters to be estimated. In this model, two separate network structures are designed to extract the features of two types of measurement data, including pressure waveforms and a vector composed of heart rate (HR) and pulse transit time (PTT), and a shared structure is used to extract their combined dependencies on the parameters. Besides, we try to use the transfer learning (TL) technology to further strengthen the personalized characteristics of a trained-well network. For assessing the proposed method, we conducted the parameter estimation using synthetic data and in vitro data respectively, and in the test with synthetic data, we evaluated the performance of the TL algorithm through two individuals with different characteristics. A series of estimation results show that the estimated parameters are in good agreement with the true values. Furthermore, it is also found that the estimation accuracy can be significantly improved by a multicycle combination strategy. Therefore, we think that the proposed method has the potential to be used for parameter estimation in cardiovascular hemodynamics, which can provide an immediate, accurate, and sustainable personalization process, and deserves more attention in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
容若发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
3秒前
6秒前
情怀应助容若采纳,获得10
19秒前
活力的妙菡完成签到,获得积分20
20秒前
46秒前
舒服的觅云完成签到,获得积分10
48秒前
苏震坤发布了新的文献求助10
50秒前
计划完成签到,获得积分10
1分钟前
1分钟前
葛力完成签到,获得积分20
1分钟前
葛力发布了新的文献求助10
1分钟前
1分钟前
gszy1975完成签到,获得积分10
1分钟前
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
科研通AI6应助葛力采纳,获得10
2分钟前
老迟到的梦旋完成签到 ,获得积分10
2分钟前
一只小锦鲤完成签到 ,获得积分10
2分钟前
Licyan完成签到,获得积分10
3分钟前
3分钟前
3分钟前
容若发布了新的文献求助10
3分钟前
3分钟前
3分钟前
上官若男应助爱听歌笑寒采纳,获得10
3分钟前
jimmy_bytheway完成签到,获得积分0
3分钟前
3分钟前
3分钟前
容若发布了新的文献求助10
3分钟前
3分钟前
重庆森林发布了新的文献求助10
3分钟前
容若发布了新的文献求助10
3分钟前
重庆森林完成签到,获得积分20
4分钟前
jinyue完成签到 ,获得积分10
4分钟前
huxuehong完成签到 ,获得积分10
4分钟前
三金发布了新的文献求助200
4分钟前
4分钟前
怕孤独的白凡完成签到 ,获得积分10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4611282
求助须知:如何正确求助?哪些是违规求助? 4016845
关于积分的说明 12435757
捐赠科研通 3698687
什么是DOI,文献DOI怎么找? 2039615
邀请新用户注册赠送积分活动 1072446
科研通“疑难数据库(出版商)”最低求助积分说明 956127