A method of parameter estimation for cardiovascular hemodynamics based on deep learning and its application to personalize a reduced-order model.

计算机科学 血流动力学 人工智能 算法
作者
Yang Zhou,Yuan He,Wu Jianwei,Chang Cui,Minglong Chen,Beibei Sun
出处
期刊:International Journal for Numerical Methods in Biomedical Engineering [Wiley]
被引量:1
标识
DOI:10.1002/cnm.3533
摘要

Precise model personalization is a key step towards the application of cardiovascular physical models. In this manuscript, we propose to use deep learning (DL) to solve the parameter estimation problem in cardiovascular hemodynamics. Based on the convolutional neural network (CNN) and fully connected neural network (FCNN), a multi-input deep neural network (DNN) model is developed to map the nonlinear relationship between measurements and the parameters to be estimated. In this model, two separate network structures are designed to extract the features of two types of measurement data, including pressure waveforms and a vector composed of heart rate (HR) and pulse transit time (PTT), and a shared structure is used to extract their combined dependencies on the parameters. Besides, we try to use the transfer learning (TL) technology to further strengthen the personalized characteristics of a trained-well network. For assessing the proposed method, we conducted the parameter estimation using synthetic data and in vitro data respectively, and in the test with synthetic data, we evaluated the performance of the TL algorithm through two individuals with different characteristics. A series of estimation results show that the estimated parameters are in good agreement with the true values. Furthermore, it is also found that the estimation accuracy can be significantly improved by a multicycle combination strategy. Therefore, we think that the proposed method has the potential to be used for parameter estimation in cardiovascular hemodynamics, which can provide an immediate, accurate, and sustainable personalization process, and deserves more attention in the future.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Zzzzzzz发布了新的文献求助10
刚刚
严健翎完成签到,获得积分10
1秒前
大方酶发布了新的文献求助20
1秒前
微笑老太发布了新的文献求助30
1秒前
2秒前
英姑应助活泼的如容采纳,获得10
2秒前
bear完成签到,获得积分20
2秒前
烟花应助YULIA采纳,获得30
2秒前
2秒前
2秒前
臧为发布了新的文献求助10
3秒前
3秒前
3秒前
3秒前
科研通AI6应助bkok采纳,获得10
3秒前
薄荷完成签到,获得积分10
4秒前
dew应助芝士草莓蛋挞采纳,获得10
4秒前
英俊的铭应助szp采纳,获得10
4秒前
meng发布了新的文献求助10
4秒前
4秒前
4秒前
欢呼冷亦完成签到,获得积分10
4秒前
4秒前
4秒前
青柚子完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助10
5秒前
青苔发布了新的文献求助10
8秒前
rock发布了新的文献求助10
8秒前
8秒前
流露完成签到,获得积分10
8秒前
玥越发布了新的文献求助10
9秒前
沉静的悒发布了新的文献求助10
9秒前
LIUJC完成签到,获得积分10
9秒前
xiuwen发布了新的文献求助10
9秒前
qianyuanyu发布了新的文献求助10
9秒前
10秒前
灿星发布了新的文献求助10
11秒前
11秒前
lucky37发布了新的文献求助10
12秒前
13秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5614975
求助须知:如何正确求助?哪些是违规求助? 4699849
关于积分的说明 14905634
捐赠科研通 4740875
什么是DOI,文献DOI怎么找? 2547874
邀请新用户注册赠送积分活动 1511649
关于科研通互助平台的介绍 1473715