A method of parameter estimation for cardiovascular hemodynamics based on deep learning and its application to personalize a reduced-order model.

计算机科学 血流动力学 人工智能 算法
作者
Yang Zhou,Yuan He,Wu Jianwei,Chang Cui,Minglong Chen,Beibei Sun
出处
期刊:International Journal for Numerical Methods in Biomedical Engineering [Wiley]
被引量:1
标识
DOI:10.1002/cnm.3533
摘要

Precise model personalization is a key step towards the application of cardiovascular physical models. In this manuscript, we propose to use deep learning (DL) to solve the parameter estimation problem in cardiovascular hemodynamics. Based on the convolutional neural network (CNN) and fully connected neural network (FCNN), a multi-input deep neural network (DNN) model is developed to map the nonlinear relationship between measurements and the parameters to be estimated. In this model, two separate network structures are designed to extract the features of two types of measurement data, including pressure waveforms and a vector composed of heart rate (HR) and pulse transit time (PTT), and a shared structure is used to extract their combined dependencies on the parameters. Besides, we try to use the transfer learning (TL) technology to further strengthen the personalized characteristics of a trained-well network. For assessing the proposed method, we conducted the parameter estimation using synthetic data and in vitro data respectively, and in the test with synthetic data, we evaluated the performance of the TL algorithm through two individuals with different characteristics. A series of estimation results show that the estimated parameters are in good agreement with the true values. Furthermore, it is also found that the estimation accuracy can be significantly improved by a multicycle combination strategy. Therefore, we think that the proposed method has the potential to be used for parameter estimation in cardiovascular hemodynamics, which can provide an immediate, accurate, and sustainable personalization process, and deserves more attention in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
exile完成签到,获得积分10
刚刚
朱一龙发布了新的文献求助10
刚刚
mawenting完成签到 ,获得积分10
2秒前
zeke完成签到,获得积分10
3秒前
科研通AI5应助solobang采纳,获得10
4秒前
4秒前
小宇OvO发布了新的文献求助10
5秒前
5秒前
忘羡222完成签到,获得积分10
5秒前
专一发布了新的文献求助10
7秒前
跳跃曼文完成签到,获得积分10
8秒前
干将莫邪完成签到,获得积分10
9秒前
SYLH应助exile采纳,获得10
9秒前
小二郎应助魔幻的从梦采纳,获得10
10秒前
11秒前
雪鸽鸽发布了新的文献求助10
11秒前
12秒前
13秒前
13秒前
14秒前
科研通AI5应助朱一龙采纳,获得30
15秒前
SharonDu完成签到 ,获得积分10
16秒前
ayin完成签到,获得积分10
16秒前
17秒前
17秒前
啦啦啦完成签到,获得积分10
17秒前
coffee发布了新的文献求助10
18秒前
18秒前
科研混子发布了新的文献求助10
18秒前
咿咿呀呀发布了新的文献求助10
18秒前
酷酷碧发布了新的文献求助10
20秒前
飘逸宛丝完成签到,获得积分10
21秒前
qzaima发布了新的文献求助10
21秒前
米酒完成签到,获得积分10
23秒前
step_stone给step_stone的求助进行了留言
23秒前
乐乐应助ayin采纳,获得10
24秒前
无花果应助hhh采纳,获得10
26秒前
叁壹粑粑完成签到,获得积分10
27秒前
酷酷碧完成签到,获得积分10
27秒前
28秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824