A method of parameter estimation for cardiovascular hemodynamics based on deep learning and its application to personalize a reduced-order model.

计算机科学 血流动力学 人工智能 算法
作者
Yang Zhou,Yuan He,Wu Jianwei,Chang Cui,Minglong Chen,Beibei Sun
出处
期刊:International Journal for Numerical Methods in Biomedical Engineering [Wiley]
被引量:1
标识
DOI:10.1002/cnm.3533
摘要

Precise model personalization is a key step towards the application of cardiovascular physical models. In this manuscript, we propose to use deep learning (DL) to solve the parameter estimation problem in cardiovascular hemodynamics. Based on the convolutional neural network (CNN) and fully connected neural network (FCNN), a multi-input deep neural network (DNN) model is developed to map the nonlinear relationship between measurements and the parameters to be estimated. In this model, two separate network structures are designed to extract the features of two types of measurement data, including pressure waveforms and a vector composed of heart rate (HR) and pulse transit time (PTT), and a shared structure is used to extract their combined dependencies on the parameters. Besides, we try to use the transfer learning (TL) technology to further strengthen the personalized characteristics of a trained-well network. For assessing the proposed method, we conducted the parameter estimation using synthetic data and in vitro data respectively, and in the test with synthetic data, we evaluated the performance of the TL algorithm through two individuals with different characteristics. A series of estimation results show that the estimated parameters are in good agreement with the true values. Furthermore, it is also found that the estimation accuracy can be significantly improved by a multicycle combination strategy. Therefore, we think that the proposed method has the potential to be used for parameter estimation in cardiovascular hemodynamics, which can provide an immediate, accurate, and sustainable personalization process, and deserves more attention in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
孔雀翎完成签到,获得积分10
1秒前
聂先生完成签到,获得积分10
21秒前
雨后完成签到 ,获得积分10
38秒前
上官枫完成签到 ,获得积分10
40秒前
42秒前
45秒前
sophiemore完成签到,获得积分10
48秒前
YamDaamCaa应助hjhhjh采纳,获得30
49秒前
55秒前
59秒前
JJ发布了新的文献求助10
1分钟前
GankhuyagJavzan完成签到,获得积分10
1分钟前
nenoaowu发布了新的文献求助10
1分钟前
m李完成签到 ,获得积分10
1分钟前
nenoaowu完成签到,获得积分10
1分钟前
鲸鱼打滚完成签到 ,获得积分10
1分钟前
贤惠的老黑完成签到 ,获得积分10
1分钟前
1分钟前
ding应助科研通管家采纳,获得10
1分钟前
汉堡包应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
wBw完成签到,获得积分10
1分钟前
冷万天发布了新的文献求助10
1分钟前
Foch发布了新的文献求助10
1分钟前
勤劳善良的胖蜜蜂完成签到,获得积分10
1分钟前
小鱼医生完成签到 ,获得积分10
1分钟前
wwmmyy完成签到 ,获得积分10
1分钟前
冷万天完成签到,获得积分10
1分钟前
1分钟前
舒服的山槐完成签到,获得积分10
1分钟前
杨天天完成签到,获得积分10
1分钟前
脑洞疼应助Lynn采纳,获得10
1分钟前
太阳花发布了新的文献求助10
2分钟前
Foch完成签到,获得积分10
2分钟前
2分钟前
jjy完成签到,获得积分10
2分钟前
王多肉完成签到,获得积分10
2分钟前
2分钟前
股价发布了新的文献求助10
2分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965763
求助须知:如何正确求助?哪些是违规求助? 3510977
关于积分的说明 11155912
捐赠科研通 3245469
什么是DOI,文献DOI怎么找? 1793035
邀请新用户注册赠送积分活动 874201
科研通“疑难数据库(出版商)”最低求助积分说明 804251