亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A method of parameter estimation for cardiovascular hemodynamics based on deep learning and its application to personalize a reduced-order model.

计算机科学 血流动力学 人工智能 算法
作者
Yang Zhou,Yuan He,Wu Jianwei,Chang Cui,Minglong Chen,Beibei Sun
出处
期刊:International Journal for Numerical Methods in Biomedical Engineering [Wiley]
被引量:1
标识
DOI:10.1002/cnm.3533
摘要

Precise model personalization is a key step towards the application of cardiovascular physical models. In this manuscript, we propose to use deep learning (DL) to solve the parameter estimation problem in cardiovascular hemodynamics. Based on the convolutional neural network (CNN) and fully connected neural network (FCNN), a multi-input deep neural network (DNN) model is developed to map the nonlinear relationship between measurements and the parameters to be estimated. In this model, two separate network structures are designed to extract the features of two types of measurement data, including pressure waveforms and a vector composed of heart rate (HR) and pulse transit time (PTT), and a shared structure is used to extract their combined dependencies on the parameters. Besides, we try to use the transfer learning (TL) technology to further strengthen the personalized characteristics of a trained-well network. For assessing the proposed method, we conducted the parameter estimation using synthetic data and in vitro data respectively, and in the test with synthetic data, we evaluated the performance of the TL algorithm through two individuals with different characteristics. A series of estimation results show that the estimated parameters are in good agreement with the true values. Furthermore, it is also found that the estimation accuracy can be significantly improved by a multicycle combination strategy. Therefore, we think that the proposed method has the potential to be used for parameter estimation in cardiovascular hemodynamics, which can provide an immediate, accurate, and sustainable personalization process, and deserves more attention in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Doctor.TANG完成签到 ,获得积分10
9秒前
小蘑菇应助xuan采纳,获得10
36秒前
43秒前
xuan发布了新的文献求助10
47秒前
浮游应助ywy采纳,获得10
48秒前
Criminology34应助科研通管家采纳,获得10
1分钟前
动听千秋完成签到 ,获得积分10
1分钟前
1分钟前
兴奋秋珊发布了新的文献求助10
1分钟前
Orange应助ORAzzz采纳,获得10
1分钟前
1分钟前
兴奋秋珊发布了新的文献求助10
1分钟前
1分钟前
1分钟前
兴奋秋珊发布了新的文献求助10
1分钟前
2分钟前
兴奋秋珊发布了新的文献求助10
2分钟前
领导范儿应助xuan采纳,获得10
2分钟前
2分钟前
2分钟前
兴奋秋珊发布了新的文献求助10
2分钟前
2分钟前
xuan发布了新的文献求助10
2分钟前
大个应助着急的书白采纳,获得10
2分钟前
2分钟前
李爱国应助慕青采纳,获得10
2分钟前
粥粥完成签到 ,获得积分10
2分钟前
兴奋秋珊发布了新的文献求助10
2分钟前
浮游应助ywy采纳,获得10
2分钟前
2分钟前
2分钟前
顾建瑜发布了新的文献求助10
2分钟前
皛皛完成签到,获得积分10
2分钟前
李健应助liuliu采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
Takahara2000应助科研通管家采纳,获得30
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
爆米花应助AAAA采纳,获得10
3分钟前
3分钟前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Holistic Discourse Analysis 600
Constitutional and Administrative Law 600
Vertebrate Palaeontology, 5th Edition 530
Fiction e non fiction: storia, teorie e forme 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5346307
求助须知:如何正确求助?哪些是违规求助? 4480984
关于积分的说明 13947084
捐赠科研通 4378742
什么是DOI,文献DOI怎么找? 2406045
邀请新用户注册赠送积分活动 1398580
关于科研通互助平台的介绍 1371291