已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A method of parameter estimation for cardiovascular hemodynamics based on deep learning and its application to personalize a reduced-order model.

计算机科学 血流动力学 人工智能 算法
作者
Yang Zhou,Yuan He,Wu Jianwei,Chang Cui,Minglong Chen,Beibei Sun
出处
期刊:International Journal for Numerical Methods in Biomedical Engineering [Wiley]
被引量:1
标识
DOI:10.1002/cnm.3533
摘要

Precise model personalization is a key step towards the application of cardiovascular physical models. In this manuscript, we propose to use deep learning (DL) to solve the parameter estimation problem in cardiovascular hemodynamics. Based on the convolutional neural network (CNN) and fully connected neural network (FCNN), a multi-input deep neural network (DNN) model is developed to map the nonlinear relationship between measurements and the parameters to be estimated. In this model, two separate network structures are designed to extract the features of two types of measurement data, including pressure waveforms and a vector composed of heart rate (HR) and pulse transit time (PTT), and a shared structure is used to extract their combined dependencies on the parameters. Besides, we try to use the transfer learning (TL) technology to further strengthen the personalized characteristics of a trained-well network. For assessing the proposed method, we conducted the parameter estimation using synthetic data and in vitro data respectively, and in the test with synthetic data, we evaluated the performance of the TL algorithm through two individuals with different characteristics. A series of estimation results show that the estimated parameters are in good agreement with the true values. Furthermore, it is also found that the estimation accuracy can be significantly improved by a multicycle combination strategy. Therefore, we think that the proposed method has the potential to be used for parameter estimation in cardiovascular hemodynamics, which can provide an immediate, accurate, and sustainable personalization process, and deserves more attention in the future.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
111222333完成签到,获得积分20
刚刚
哈哈哈发布了新的文献求助10
1秒前
鹿笙完成签到,获得积分10
1秒前
迪迪发布了新的文献求助30
3秒前
3秒前
123456发布了新的文献求助10
3秒前
英俊的铭应助发发采纳,获得10
3秒前
自然怀蕾关注了科研通微信公众号
4秒前
5秒前
乌鲁鲁发布了新的文献求助10
8秒前
pass完成签到 ,获得积分10
8秒前
科yt完成签到,获得积分10
9秒前
Thi发布了新的文献求助10
10秒前
13秒前
123456完成签到,获得积分20
15秒前
充电宝应助mandy采纳,获得10
17秒前
星辰大海应助迪迪采纳,获得30
20秒前
lee完成签到 ,获得积分10
20秒前
乐乐应助111222333采纳,获得10
23秒前
23秒前
无题完成签到,获得积分10
24秒前
张泽林完成签到 ,获得积分10
25秒前
我是老大应助哈哈哈采纳,获得30
25秒前
七七完成签到 ,获得积分10
26秒前
笑点低的悒完成签到 ,获得积分10
27秒前
Hello应助yun采纳,获得10
28秒前
科研通AI6应助sadascaqwqw采纳,获得10
29秒前
自然怀蕾完成签到,获得积分10
30秒前
平淡如天完成签到,获得积分10
34秒前
35秒前
Cc完成签到 ,获得积分10
38秒前
迪迪完成签到,获得积分10
40秒前
qjw发布了新的文献求助10
40秒前
千幻完成签到,获得积分10
43秒前
43秒前
45秒前
46秒前
49秒前
wang5945完成签到 ,获得积分10
52秒前
qjw完成签到,获得积分10
52秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5590260
求助须知:如何正确求助?哪些是违规求助? 4674687
关于积分的说明 14795015
捐赠科研通 4631029
什么是DOI,文献DOI怎么找? 2532659
邀请新用户注册赠送积分活动 1501235
关于科研通互助平台的介绍 1468581