A method of parameter estimation for cardiovascular hemodynamics based on deep learning and its application to personalize a reduced-order model.

计算机科学 血流动力学 人工智能 算法
作者
Yang Zhou,Yuan He,Wu Jianwei,Chang Cui,Minglong Chen,Beibei Sun
出处
期刊:International Journal for Numerical Methods in Biomedical Engineering [Wiley]
被引量:1
标识
DOI:10.1002/cnm.3533
摘要

Precise model personalization is a key step towards the application of cardiovascular physical models. In this manuscript, we propose to use deep learning (DL) to solve the parameter estimation problem in cardiovascular hemodynamics. Based on the convolutional neural network (CNN) and fully connected neural network (FCNN), a multi-input deep neural network (DNN) model is developed to map the nonlinear relationship between measurements and the parameters to be estimated. In this model, two separate network structures are designed to extract the features of two types of measurement data, including pressure waveforms and a vector composed of heart rate (HR) and pulse transit time (PTT), and a shared structure is used to extract their combined dependencies on the parameters. Besides, we try to use the transfer learning (TL) technology to further strengthen the personalized characteristics of a trained-well network. For assessing the proposed method, we conducted the parameter estimation using synthetic data and in vitro data respectively, and in the test with synthetic data, we evaluated the performance of the TL algorithm through two individuals with different characteristics. A series of estimation results show that the estimated parameters are in good agreement with the true values. Furthermore, it is also found that the estimation accuracy can be significantly improved by a multicycle combination strategy. Therefore, we think that the proposed method has the potential to be used for parameter estimation in cardiovascular hemodynamics, which can provide an immediate, accurate, and sustainable personalization process, and deserves more attention in the future.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
johnhush完成签到,获得积分10
3秒前
4秒前
苗浩阳完成签到,获得积分10
5秒前
吴亚博发布了新的文献求助10
5秒前
5秒前
7秒前
默默的半梅完成签到,获得积分10
10秒前
10秒前
SciGPT应助王富贵采纳,获得10
11秒前
11秒前
11秒前
赘婿应助您吃了吗采纳,获得10
11秒前
可爱书本完成签到,获得积分10
11秒前
13秒前
14秒前
15秒前
CodeCraft应助下雨了采纳,获得10
16秒前
WIK完成签到,获得积分10
16秒前
佳佳发布了新的文献求助10
16秒前
17秒前
无心的苡完成签到,获得积分10
18秒前
Mila完成签到,获得积分10
18秒前
Neymar发布了新的文献求助10
19秒前
19秒前
19秒前
干净寻冬完成签到,获得积分10
19秒前
明亮的山河完成签到,获得积分10
19秒前
19秒前
21秒前
yanghua218发布了新的文献求助10
22秒前
22秒前
suzhu发布了新的文献求助10
22秒前
清秀芝麻完成签到 ,获得积分10
23秒前
Ykaor完成签到 ,获得积分10
23秒前
量子星尘发布了新的文献求助10
24秒前
25秒前
25秒前
浮泷发布了新的文献求助10
26秒前
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5571758
求助须知:如何正确求助?哪些是违规求助? 4656925
关于积分的说明 14718453
捐赠科研通 4597827
什么是DOI,文献DOI怎么找? 2523359
邀请新用户注册赠送积分活动 1494204
关于科研通互助平台的介绍 1464312