重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

A method of parameter estimation for cardiovascular hemodynamics based on deep learning and its application to personalize a reduced-order model.

计算机科学 血流动力学 人工智能 算法
作者
Yang Zhou,Yuan He,Wu Jianwei,Chang Cui,Minglong Chen,Beibei Sun
出处
期刊:International Journal for Numerical Methods in Biomedical Engineering [Wiley]
被引量:1
标识
DOI:10.1002/cnm.3533
摘要

Precise model personalization is a key step towards the application of cardiovascular physical models. In this manuscript, we propose to use deep learning (DL) to solve the parameter estimation problem in cardiovascular hemodynamics. Based on the convolutional neural network (CNN) and fully connected neural network (FCNN), a multi-input deep neural network (DNN) model is developed to map the nonlinear relationship between measurements and the parameters to be estimated. In this model, two separate network structures are designed to extract the features of two types of measurement data, including pressure waveforms and a vector composed of heart rate (HR) and pulse transit time (PTT), and a shared structure is used to extract their combined dependencies on the parameters. Besides, we try to use the transfer learning (TL) technology to further strengthen the personalized characteristics of a trained-well network. For assessing the proposed method, we conducted the parameter estimation using synthetic data and in vitro data respectively, and in the test with synthetic data, we evaluated the performance of the TL algorithm through two individuals with different characteristics. A series of estimation results show that the estimated parameters are in good agreement with the true values. Furthermore, it is also found that the estimation accuracy can be significantly improved by a multicycle combination strategy. Therefore, we think that the proposed method has the potential to be used for parameter estimation in cardiovascular hemodynamics, which can provide an immediate, accurate, and sustainable personalization process, and deserves more attention in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我是老大应助chanlei采纳,获得10
刚刚
刚刚
石石刘完成签到 ,获得积分10
1秒前
za发布了新的文献求助10
1秒前
2秒前
北张发布了新的文献求助10
3秒前
3秒前
LSY发布了新的文献求助10
4秒前
歪比巴卜好龙关注了科研通微信公众号
4秒前
完美世界应助harry采纳,获得10
4秒前
5秒前
passion发布了新的文献求助10
6秒前
6秒前
茶送白粥完成签到,获得积分10
8秒前
8秒前
浮游应助一支得卦采纳,获得10
9秒前
9秒前
10秒前
科研通AI2S应助粗心的怜寒采纳,获得10
10秒前
10秒前
11秒前
wanzixian发布了新的文献求助10
11秒前
浮游应助体贴的小天鹅采纳,获得10
11秒前
量子星尘发布了新的文献求助10
12秒前
包容的向雁完成签到,获得积分10
12秒前
飞飞飞完成签到,获得积分10
12秒前
13秒前
14秒前
烽火发布了新的文献求助10
14秒前
爆米花应助lx采纳,获得10
15秒前
今后应助KYT采纳,获得10
15秒前
16秒前
Huguizhou发布了新的文献求助10
16秒前
16秒前
zlintcm发布了新的文献求助10
16秒前
17秒前
慕青应助oldyang采纳,获得10
18秒前
思源应助勤奋的远锋采纳,获得10
18秒前
传奇3应助郭素玲采纳,获得10
18秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5467931
求助须知:如何正确求助?哪些是违规求助? 4571421
关于积分的说明 14330283
捐赠科研通 4497999
什么是DOI,文献DOI怎么找? 2464266
邀请新用户注册赠送积分活动 1453006
关于科研通互助平台的介绍 1427707