已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A method of parameter estimation for cardiovascular hemodynamics based on deep learning and its application to personalize a reduced-order model.

计算机科学 血流动力学 人工智能 算法
作者
Yang Zhou,Yuan He,Wu Jianwei,Chang Cui,Minglong Chen,Beibei Sun
出处
期刊:International Journal for Numerical Methods in Biomedical Engineering [Wiley]
被引量:1
标识
DOI:10.1002/cnm.3533
摘要

Precise model personalization is a key step towards the application of cardiovascular physical models. In this manuscript, we propose to use deep learning (DL) to solve the parameter estimation problem in cardiovascular hemodynamics. Based on the convolutional neural network (CNN) and fully connected neural network (FCNN), a multi-input deep neural network (DNN) model is developed to map the nonlinear relationship between measurements and the parameters to be estimated. In this model, two separate network structures are designed to extract the features of two types of measurement data, including pressure waveforms and a vector composed of heart rate (HR) and pulse transit time (PTT), and a shared structure is used to extract their combined dependencies on the parameters. Besides, we try to use the transfer learning (TL) technology to further strengthen the personalized characteristics of a trained-well network. For assessing the proposed method, we conducted the parameter estimation using synthetic data and in vitro data respectively, and in the test with synthetic data, we evaluated the performance of the TL algorithm through two individuals with different characteristics. A series of estimation results show that the estimated parameters are in good agreement with the true values. Furthermore, it is also found that the estimation accuracy can be significantly improved by a multicycle combination strategy. Therefore, we think that the proposed method has the potential to be used for parameter estimation in cardiovascular hemodynamics, which can provide an immediate, accurate, and sustainable personalization process, and deserves more attention in the future.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CodeCraft应助laolaolao采纳,获得30
2秒前
4秒前
BowieHuang应助科研通管家采纳,获得10
10秒前
英姑应助可靠幼旋采纳,获得10
10秒前
传奇3应助科研通管家采纳,获得10
10秒前
10秒前
10秒前
11秒前
十六发布了新的文献求助10
14秒前
苹什猫完成签到,获得积分20
18秒前
十六完成签到,获得积分10
19秒前
孙涛完成签到,获得积分10
19秒前
19秒前
孙涛发布了新的文献求助10
22秒前
27秒前
tjnksy完成签到,获得积分10
28秒前
天天快乐应助Sybsy采纳,获得10
29秒前
乐乐应助孙涛采纳,获得10
30秒前
33秒前
宁海发布了新的文献求助10
34秒前
大龙哥886应助GY97采纳,获得10
36秒前
gxmu6322完成签到,获得积分10
41秒前
lfl完成签到,获得积分20
44秒前
45秒前
大学生完成签到 ,获得积分10
45秒前
宁海完成签到,获得积分10
47秒前
48秒前
吴兰田完成签到,获得积分10
48秒前
sadascaqwqw发布了新的文献求助10
48秒前
null应助哲别采纳,获得10
49秒前
lfl发布了新的文献求助10
49秒前
忧郁的煎蛋完成签到 ,获得积分10
51秒前
yhgz完成签到,获得积分10
53秒前
哈哈哈发布了新的文献求助10
53秒前
LUYI完成签到,获得积分10
56秒前
科研通AI6应助lfl采纳,获得10
59秒前
温柔发卡完成签到 ,获得积分10
59秒前
万能图书馆应助Fng11采纳,获得10
1分钟前
欧阳慧玲完成签到 ,获得积分10
1分钟前
打打应助哈哈哈采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5590260
求助须知:如何正确求助?哪些是违规求助? 4674687
关于积分的说明 14795015
捐赠科研通 4631029
什么是DOI,文献DOI怎么找? 2532659
邀请新用户注册赠送积分活动 1501235
关于科研通互助平台的介绍 1468581