Multi-objective lichtenberg algorithm: A hybrid physics-based meta-heuristic for solving engineering problems

计算机科学 趋同(经济学) 启发式 元启发式 算法 数学优化 人口 启发式 人工智能 数学 经济增长 社会学 人口学 经济
作者
João Luiz Junho Pereira,Guilherme Antônio Oliver,Matheus Brendon Francisco,Sebastião Simões Cunha,Guilherme Ferreira Gomes
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:187: 115939-115939 被引量:56
标识
DOI:10.1016/j.eswa.2021.115939
摘要

With the advancement of computing and inspired by optimal phenomena found in nature, several algorithms capable of solving complex engineering problems have been developed. This work details the development of the Multi-objective Lichtenberg Algorithm, the version capable of dealing with more than one objective of a newly created meta-heuristic inspired by the propagation of radial intra-cloud lightning and Lichtenberg figures. The algorithm considers in its optimization routine a hybrid system based on both the population and the trajectory, demonstrating a great capacity for exploration and exploitation since it distributes points to be evaluated in the objective function through a Lichtenberg figure that is shot in sizes and different rotations at each iteration. The Multi-objective Lichtenberg Algorithm (MOLA) is the first hybrid multi-objective meta-heuristic and was tested against traditional and recent meta-heuristics using famous and complex test function groups and also constrained complex engineering problems. Regarding important metrics for convergence and coverage assessment, the Multi-objective Lichtenberg Algorithm proved to be a promising multi-objective algorithm surpassing others traditional and recent algorithms such as NSGA-II, MOPSO, MOEA/D, MOGOA and MOGWO with expressive values of convergence and maximum spread.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顾矜应助jekin采纳,获得10
刚刚
忧郁飞松完成签到,获得积分10
3秒前
6秒前
6秒前
7秒前
11发布了新的文献求助10
8秒前
打打应助活泼山雁采纳,获得10
9秒前
10秒前
琮博完成签到,获得积分10
10秒前
TLL完成签到,获得积分10
11秒前
dungaway发布了新的文献求助10
11秒前
zhy发布了新的文献求助10
11秒前
12秒前
happyboy2008发布了新的文献求助10
12秒前
12秒前
找文献完成签到,获得积分20
12秒前
虚幻故事完成签到,获得积分10
13秒前
14秒前
思源应助Penny采纳,获得10
14秒前
Owen应助文龙采纳,获得10
14秒前
Unbelievable完成签到,获得积分10
14秒前
机灵的涔完成签到,获得积分10
14秒前
阳阳阳完成签到 ,获得积分10
15秒前
16秒前
找文献发布了新的文献求助10
16秒前
17秒前
虚幻故事发布了新的文献求助10
17秒前
spring发布了新的文献求助10
17秒前
lalalala发布了新的文献求助10
17秒前
眼睛大的傲菡完成签到,获得积分10
17秒前
小董不懂发布了新的文献求助10
19秒前
19秒前
巴甫洛夫的小狗完成签到,获得积分10
21秒前
21秒前
汉堡包应助达达采纳,获得10
22秒前
直率的初露完成签到,获得积分10
22秒前
24秒前
NexusExplorer应助小董不懂采纳,获得10
24秒前
微眸应助VDC采纳,获得10
24秒前
七号在野闪闪完成签到,获得积分10
24秒前
高分求助中
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Machine Learning for Polymer Informatics 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
2024 Medicinal Chemistry Reviews 480
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3222562
求助须知:如何正确求助?哪些是违规求助? 2871242
关于积分的说明 8174624
捐赠科研通 2538263
什么是DOI,文献DOI怎么找? 1370390
科研通“疑难数据库(出版商)”最低求助积分说明 645793
邀请新用户注册赠送积分活动 619580