Towards sustainable smart cities: A secure and scalable trading system for residential homes using blockchain and artificial intelligence

计算机科学 块链 可扩展性 动态定价 云计算 智能合约 服务器 分布式计算 计算机安全 计算机网络 业务 数据库 操作系统 营销
作者
S. O. Dahunsi,Nadeem Javaid,Turki Ali Alghamdi,Neeraj Kumar
出处
期刊:Sustainable Cities and Society [Elsevier]
卷期号:76: 103371-103371 被引量:34
标识
DOI:10.1016/j.scs.2021.103371
摘要

This paper proposes a secure blockchain based energy trading system for residential homes. In the system, a new proof-of-computational closeness (PoCC) consensus protocol is proposed for the selection of miners and the creation of blocks. Moreover, an analytical energy pricing policy is designed to solve the problem of existing energy pricing policies in a distributed trading environment. A dynamic multi-pseudonym mechanism is developed for the prosumers to preserve their transactional privacy during energy trading. Since it requires extra storage and computing resources for the blockchain miners to simultaneously execute both mining process and application intensive tasks, therefore, an improved sparse neural network (ISNN) is proposed for computation offloading to the cloud servers. In ISNN, a Jaya optimization algorithm is used to accelerate the error convergence rate while reducing the number of connections between different layers of neurons. Besides, ISNN optimizes the overall computational cost of the system. Furthermore, the security of the prosumers is ensured using blockchain technology while security analysis shows that the system is robust against the Sybil attack. The proposed blockchain based peer-to-peer secure energy trading system is extremely important for sustainable cities and society. Simulations are conducted to evaluate the effectiveness of the proposed system. The proposed pricing policy is compared with time-of-use pricing, critical peak pricing and real-time pricing policies. From the results, it is proved that the prosumers achieve a higher degree of satisfaction and utility when using the proposed pricing policy. Moreover, the probability of a successful Sybil attack is zero as the number of attackers’ identities and computational capacities increases. Under different sizes of data to be uploaded, the proposed ISNN scheme has the least average computational cost and data transmission time as compared to deep reinforcement learning combined with genetic algorithm (DRGO) and sparse evolutionary training and multi-layer perceptron (SET-MLP) schemes in the literature. Moreover, the proposed system is tested for scalability by increasing the number of prosumers. Extensive simulations are performed and the results depict the satisfactory performance of the proposed system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
cd发布了新的文献求助10
刚刚
过时的丹秋完成签到 ,获得积分10
1秒前
1秒前
成就缘分完成签到,获得积分10
1秒前
勤恳的问儿给勤恳的问儿的求助进行了留言
1秒前
一米阳光完成签到,获得积分10
2秒前
深情安青应助April采纳,获得10
2秒前
2秒前
2秒前
淇淇怪怪完成签到,获得积分10
3秒前
4秒前
小蘑菇应助二二二采纳,获得10
4秒前
4秒前
最牛的菠萝隐士完成签到,获得积分10
4秒前
zhang完成签到 ,获得积分10
5秒前
灵犀完成签到,获得积分10
5秒前
ttssooe发布了新的文献求助10
5秒前
CipherSage应助Ll采纳,获得10
6秒前
6秒前
千里发布了新的文献求助10
6秒前
Mia发布了新的文献求助20
7秒前
女神金发布了新的文献求助60
7秒前
7秒前
puny完成签到,获得积分10
7秒前
7秒前
彭于晏应助zhonghbush采纳,获得10
7秒前
啦啦啦啦啦完成签到,获得积分10
8秒前
hmx完成签到,获得积分10
8秒前
忧郁的人英完成签到 ,获得积分10
8秒前
8秒前
8秒前
8秒前
xhy发布了新的文献求助10
8秒前
晴天霹雳3732完成签到,获得积分0
9秒前
carbonhan完成签到,获得积分10
9秒前
MJT10086完成签到,获得积分10
9秒前
9秒前
天天快乐应助阿楠采纳,获得10
10秒前
忧郁的听露完成签到,获得积分20
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672