已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Dynamic Pricing and Information Disclosure for Fresh Produce: An Artificial Intelligence Approach

动态定价 质量(理念) 垄断竞争 业务 定价策略 计算机科学 营销 环境经济学 微观经济学 经济 认识论 哲学 垄断
作者
Cenying Yang,Yihao Feng,Andrew B. Whinston
出处
期刊:Production and Operations Management [Wiley]
卷期号:31 (1): 155-171 被引量:79
标识
DOI:10.1111/poms.13525
摘要

Failing to sell fresh produce before expiration not only hurts the bottom line of grocery retailers, but also leads to food waste. This work combines dynamic pricing and information disclosure to help retailers to effectively sell fresh produce and promote sustainability. We focus on a quality‐based pricing strategy and whether retailers should disclose information on food quality to customers. We consider a model where a monopolistic retailer sells fresh produce to customers who have different perceptions about food quality within a given time period. We employ a deep reinforcement learning algorithm to derive the optimal pricing and information strategies. Our simulation results show that a quality‐based pricing strategy yields lower prices than a pricing strategy that does not consider quality. Lower prices drive demand, thus improving profits and reducing food waste. Additionally, we show that, when an information strategy is allowed, the prices in a quality‐based pricing strategy stay the same or even increase during the selling season. This is because information disclosure helps align customers’ biased perceptions on food quality with the actual levels. We show that a combination of quality‐based pricing and information disclosure further improves profits and reduces food waste when a large portion of customers consider quality to be lower than actual levels. To implement our ideas, we propose a cloud‐based automated system that integrates sensor data, artificial intelligence, and customer communications. Our results have profound implications for the food industry on managing fresh produce.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助打个大西瓜采纳,获得10
刚刚
FashionBoy应助结实擎苍采纳,获得10
8秒前
8秒前
11秒前
14秒前
rr123456完成签到 ,获得积分10
15秒前
打打应助昭华昭华采纳,获得10
19秒前
任性冰凡完成签到 ,获得积分10
20秒前
感谢你的帮助完成签到,获得积分10
20秒前
20秒前
QOP应助土豆采纳,获得10
22秒前
汉堡包应助Justin采纳,获得10
23秒前
25秒前
YF_W完成签到,获得积分10
27秒前
111完成签到,获得积分10
29秒前
天真的不凡完成签到 ,获得积分10
29秒前
WSYang完成签到,获得积分10
31秒前
32秒前
Jasper应助aaa采纳,获得10
34秒前
Jason发布了新的文献求助10
37秒前
上官若男应助双木采纳,获得30
42秒前
42秒前
44秒前
44秒前
aaa发布了新的文献求助10
47秒前
开心的幼珊完成签到 ,获得积分10
49秒前
Nnu完成签到 ,获得积分10
50秒前
53秒前
周妍完成签到,获得积分20
54秒前
xzy998应助七十七asdmn采纳,获得10
58秒前
双木发布了新的文献求助30
58秒前
乐观之瑶发布了新的文献求助10
58秒前
59秒前
Jasen发布了新的文献求助10
1分钟前
YF_W发布了新的文献求助10
1分钟前
从容芮应助科研通管家采纳,获得30
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
我是老大应助科研通管家采纳,获得10
1分钟前
科研通AI5应助科研通管家采纳,获得10
1分钟前
1分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
Ciprofol versus propofol for adult sedation in gastrointestinal endoscopic procedures: a systematic review and meta-analysis 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3671080
求助须知:如何正确求助?哪些是违规求助? 3228002
关于积分的说明 9777848
捐赠科研通 2938195
什么是DOI,文献DOI怎么找? 1609777
邀请新用户注册赠送积分活动 760457
科研通“疑难数据库(出版商)”最低求助积分说明 735962