Point cloud denoising using non-local collaborative projections

点云 降噪 刚性变换 人工智能 离群值 正常 数学 计算机科学 算法 计算机视觉 模式识别(心理学) 几何学 曲面(拓扑)
作者
Yulin Zhou,Rui Chen,Yiqiang Q. Zhao,Xiding Ai,Guanghui Zhou
出处
期刊:Pattern Recognition [Elsevier BV]
卷期号:120: 108128-108128 被引量:12
标识
DOI:10.1016/j.patcog.2021.108128
摘要

Point cloud is important for object detection and recognition. The main challenge of point cloud denoising is to preserve the geometric structures. Several state-of-the-art point cloud denoising methods focus only on analyzing local geometric information, which is sensitive to noise and outliers. In this paper, we propose a novel point cloud denoising algorithm based on the characteristics of non-local self-similarity. First, we present an adaptive curvature threshold to select the edge points and tune their corresponding normals, which can preserve the sharp details. Then we propose a structure-aware descriptor called projective height vector to capture the local height variations by normal height projection and the most similar non-local projective height vectors are grouped into a height matrix to enhance the structure representation. Moreover, the proposed structure descriptor is invariant with rigid transformation. Finally, an improved weighted nuclear norm minimization is proposed to optimize the height matrix and reconstruct a high-quality point cloud. Rather than treating each singular value independently, each component in our proposed weight definition connects with the most important components to preserve the major structural information. Experiments on synthetic and scanned point cloud datasets demonstrate that our algorithm outperforms state-of-the-art methods in terms of reconstruction accuracy and structure preservation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
英俊的铭应助Atsuen采纳,获得10
1秒前
旷野发布了新的文献求助10
2秒前
4秒前
眉间尺完成签到,获得积分20
5秒前
柯一一应助shihangZhang采纳,获得10
5秒前
5秒前
搜集达人应助科研通管家采纳,获得10
6秒前
6秒前
小马甲应助科研通管家采纳,获得10
6秒前
柯一一应助科研通管家采纳,获得10
6秒前
6秒前
所所应助科研通管家采纳,获得10
6秒前
6秒前
JamesPei应助科研通管家采纳,获得10
6秒前
七月流火应助科研通管家采纳,获得50
6秒前
Qiao应助科研通管家采纳,获得10
6秒前
orixero应助科研通管家采纳,获得10
6秒前
顾矜应助科研通管家采纳,获得10
6秒前
情怀应助科研通管家采纳,获得10
6秒前
柯一一应助科研通管家采纳,获得10
6秒前
7秒前
7秒前
7秒前
Chowccaccio完成签到,获得积分10
7秒前
香蕉吃鱼发布了新的文献求助10
8秒前
笑解烦恼结完成签到,获得积分10
8秒前
YamDaamCaa应助讷讷采纳,获得30
8秒前
18969431868完成签到,获得积分10
10秒前
小次郎发布了新的文献求助10
10秒前
一朵发布了新的文献求助10
10秒前
8R60d8应助Chowccaccio采纳,获得10
12秒前
12秒前
13秒前
14秒前
14秒前
hhx发布了新的文献求助10
15秒前
Ava应助opus17采纳,获得10
15秒前
钟于发布了新的文献求助10
16秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966882
求助须知:如何正确求助?哪些是违规求助? 3512358
关于积分的说明 11162784
捐赠科研通 3247203
什么是DOI,文献DOI怎么找? 1793752
邀请新用户注册赠送积分活动 874602
科研通“疑难数据库(出版商)”最低求助积分说明 804432