A Real-Time Global Inference Network for One-Stage Referring Expression Comprehension

计算机科学 表达式(计算机科学) 推论 背景(考古学) 水准点(测量) 特征(语言学) 管道(软件) 参照物 人工智能 理解力 特征选择 机器学习 数据挖掘 自然语言处理 哲学 古生物学 程序设计语言 地理 语言学 生物 大地测量学
作者
Yiyi Zhou,Rongrong Ji,Gen Luo,Xiaoshuai Sun,Jinsong Su,Xinghao Ding,Chia‐Wen Lin,Qi Tian
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:34 (1): 134-143 被引量:35
标识
DOI:10.1109/tnnls.2021.3090426
摘要

Referring expression comprehension (REC) is an emerging research topic in computer vision, which refers to the detection of a target region in an image given a test description. Most existing REC methods follow a multistage pipeline, which is computationally expensive and greatly limits the applications of REC. In this article, we propose a one-stage model toward real-time REC, termed real-time global inference network (RealGIN). RealGIN addresses the issues of expression diversity and complexity of REC with two innovative designs: adaptive feature selection (AFS) and Global Attentive ReAsoNing (GARAN). Expression diversity concerns varying expression content, which includes information such as colors, attributes, locations, and fine-grained categories. To address this issue, AFS adaptively fuses features of different semantic levels to tackle the changes in expression content. In contrast, expression complexity concerns the complex relational conditions in expressions that are used to identify the referent. To this end, GARAN uses the textual feature as a pivot to collect expression-aware visual information from all regions and then diffuses this information back to each region, which provides sufficient context for modeling the relational conditions in expressions. On five benchmark datasets, i.e., RefCOCO, RefCOCO+, RefCOCOg, ReferIT, and Flickr30k, the proposed RealGIN outperforms most existing methods and achieves very competitive performances against the most advanced one, i.e., MAttNet. More importantly, under the same hardware, RealGIN can boost the processing speed by 10-20 times over the existing methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文败类应助哇哇哇哇采纳,获得10
刚刚
1秒前
小杜小杜发布了新的文献求助20
4秒前
无敌最俊朗完成签到,获得积分10
5秒前
5秒前
panisa完成签到,获得积分10
5秒前
英俊的铭应助多情的夜安采纳,获得10
6秒前
科烟生完成签到,获得积分10
6秒前
9秒前
一只熊发布了新的文献求助10
10秒前
11秒前
执着的灯泡完成签到,获得积分10
11秒前
12秒前
好困应助112233采纳,获得10
13秒前
13秒前
lkc发布了新的文献求助10
14秒前
HEIKU应助超级多巴胺采纳,获得10
14秒前
Jiaowen发布了新的文献求助10
15秒前
FAPI完成签到,获得积分10
15秒前
15秒前
COCO发布了新的文献求助10
16秒前
小花生完成签到,获得积分10
16秒前
17秒前
累啊发布了新的文献求助10
17秒前
17秒前
17秒前
19秒前
禾迮完成签到,获得积分10
19秒前
艺馨发布了新的文献求助10
19秒前
20秒前
袁奇点完成签到,获得积分10
20秒前
Niko发布了新的文献求助10
21秒前
十丶年完成签到,获得积分10
21秒前
+=完成签到,获得积分10
22秒前
22秒前
pcr163应助张同学采纳,获得80
22秒前
COCO完成签到,获得积分10
23秒前
hey,一条完成签到,获得积分10
23秒前
CBWKEYANTONG123发布了新的文献求助100
23秒前
lkc完成签到,获得积分10
24秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Radon as a natural tracer to study transport processes in a karst system. An example in the Swiss Jura 500
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3225687
求助须知:如何正确求助?哪些是违规求助? 2874545
关于积分的说明 8186664
捐赠科研通 2541556
什么是DOI,文献DOI怎么找? 1372201
科研通“疑难数据库(出版商)”最低求助积分说明 646458
邀请新用户注册赠送积分活动 620751