吸附
苯并噻唑
弗伦德利希方程
吸热过程
壳聚糖
化学
表面改性
朗缪尔
水溶液
铜
朗缪尔吸附模型
核化学
无机化学
有机化学
物理化学
作者
Ahmed Gamal,Ahmed Ibrahim,Essam M. Eliwa,Adham A. El-Zomrawy,Salah M. El‐Bahy
标识
DOI:10.1016/j.ijbiomac.2021.05.080
摘要
Contamination of water with the copper(II) ions leads to serious diseases such as liver damage and cancer. This deadly effect prompted us to target the synthesis of a novel functionalized chitosan (Cs-BT) to be used as an adsorbent for removing the copper(II) ions from the aqueous solution. The functionalization was done by introducing benzothiazole moiety into the chitosan (Cs) chain and confirmed by the full disappearance of the NH2 band in the FT-IR spectrum of the adsorbent. The TGA-DTG analysis revealed that the functionalization reduced the thermal stability of the adsorbent (Cs-BT) as compared with pure chitosan. The adsorption was evidenced by SEM and EDX analysis. The adsorption study demonstrated that the optimal adsorption conditions were 120 min contact time, pH = 6, and initial Cu(II) concentration 200 mg/L. At these conditions, the Cs-BT achieved a maximum copper adsorption capacity of 1439.7 mg/g. Consequently, Cs-BT could be a promising and efficient Cu adsorbent in water treatment. Study the adsorption kinetics and isotherms manifested that the pseudo-first-order was better than pseudo-second-order and Temkin isotherm was better than Langmuir, Freundlich, and Dubinin–Radushkevich for explaining the adsorption process. The calculated thermodynamic parameters implied the spontaneity and the endothermic nature of the adsorption process.
科研通智能强力驱动
Strongly Powered by AbleSci AI