Predicting LncRNA-Disease Association Based on Generative Adversarial Network

鉴别器 计算机科学 人工智能 机器学习 Softmax函数 联想(心理学) 数据挖掘 模式识别(心理学) 深度学习 电信 探测器 认识论 哲学
作者
Biao Du,Lin Tang,Lin Liu,Wei Zhou
出处
期刊:Current Gene Therapy [Bentham Science Publishers]
卷期号:22 (2): 144-151 被引量:14
标识
DOI:10.2174/1566523221666210506131055
摘要

Increasing research reveals that long non-coding RNAs (lncRNAs) play an important role in various biological processes of human diseases. Nonetheless, only a handful of lncRNA-disease associations have been experimentally verified. The study of lncRNA-disease association prediction based on the computational model has provided a preliminary basis for biological experiments to a great degree so as to cut down the huge cost of wet lab experiments.This study aims to learn the real distribution of lncRNA-disease association from a limited number of known lncRNA-disease association data. This paper proposes a new lncRNA-disease association prediction model called LDA-GAN based on a Generative Adversarial Network (GAN).Aiming at the problems of slow convergence rate, training instabilities, and unavailability of discrete data in traditional GAN, LDA-GAN utilizes the Gumbel-softmax technology to construct a differentiable process for simulating discrete sampling. Meanwhile, the generator and the discriminator of LDA-GAN are integrated to establish the overall optimization goal based on the pairwise loss function.Experiments on standard datasets demonstrate that LDA-GAN achieves not only high stability and high efficiency in the process of confrontation learning but also gives full play to the semisupervised learning advantage of generative adversarial learning framework for unlabeled data, which further improves the prediction accuracy of lncRNA-disease association. Besides, case studies show that LDA-GAN can accurately generate potential diseases for several lncRNAs.We introduce a generative adversarial model to identify lncRNA-disease associations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
思源应助nenoaowu采纳,获得30
1秒前
今天发CNS了嘛完成签到,获得积分10
3秒前
煌煌发布了新的文献求助10
3秒前
陈冠希完成签到,获得积分10
4秒前
科研通AI5应助mxzl采纳,获得10
4秒前
hahah发布了新的文献求助10
4秒前
4秒前
5秒前
斯文的寒风完成签到,获得积分0
6秒前
Alaskan完成签到,获得积分20
6秒前
LR完成签到 ,获得积分10
6秒前
8秒前
Alaskan发布了新的文献求助10
9秒前
搜集达人应助qq采纳,获得10
10秒前
偷懒的熊猫完成签到 ,获得积分10
10秒前
搜集达人应助后知不觉采纳,获得10
10秒前
11秒前
努力学习发布了新的文献求助10
11秒前
大方弘文完成签到,获得积分10
11秒前
昏睡的蟠桃应助LGH采纳,获得20
12秒前
大模型应助ker采纳,获得10
12秒前
李健的小迷弟应助hahah采纳,获得10
12秒前
JamesPei应助琥珀采纳,获得10
12秒前
小王发布了新的文献求助10
12秒前
bkagyin应助蟑螂你好采纳,获得10
12秒前
科研通AI5应助科研小白菜采纳,获得10
14秒前
14秒前
Desmend发布了新的文献求助10
14秒前
小二郎应助Xenia采纳,获得10
14秒前
14秒前
goldenfleece完成签到,获得积分10
15秒前
15秒前
爆米花应助滕擎采纳,获得10
15秒前
汉堡包应助奋斗的桐采纳,获得10
15秒前
16秒前
16秒前
科研通AI5应助靳路采纳,获得10
17秒前
Miracle完成签到,获得积分10
17秒前
文艺芷蕊发布了新的文献求助10
17秒前
飒飒完成签到,获得积分10
18秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 500
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3657844
求助须知:如何正确求助?哪些是违规求助? 3219862
关于积分的说明 9733864
捐赠科研通 2928835
什么是DOI,文献DOI怎么找? 1603686
邀请新用户注册赠送积分活动 756719
科研通“疑难数据库(出版商)”最低求助积分说明 734079