SimGNN: A Neural Network Approach to Fast Graph Similarity Computation

计算机科学 成对比较 理论计算机科学 计算 图形 空图形 电压图 算法 折线图 人工智能
作者
Yunsheng Bai,Ding Hao,Song Bian,Ting Chen,Yizhou Sun,Wang Wei
出处
期刊:Cornell University - arXiv 被引量:34
标识
DOI:10.48550/arxiv.1808.05689
摘要

Graph similarity search is among the most important graph-based applications, e.g. finding the chemical compounds that are most similar to a query compound. Graph similarity computation, such as Graph Edit Distance (GED) and Maximum Common Subgraph (MCS), is the core operation of graph similarity search and many other applications, but very costly to compute in practice. Inspired by the recent success of neural network approaches to several graph applications, such as node or graph classification, we propose a novel neural network based approach to address this classic yet challenging graph problem, aiming to alleviate the computational burden while preserving a good performance. The proposed approach, called SimGNN, combines two strategies. First, we design a learnable embedding function that maps every graph into a vector, which provides a global summary of a graph. A novel attention mechanism is proposed to emphasize the important nodes with respect to a specific similarity metric. Second, we design a pairwise node comparison method to supplement the graph-level embeddings with fine-grained node-level information. Our model achieves better generalization on unseen graphs, and in the worst case runs in quadratic time with respect to the number of nodes in two graphs. Taking GED computation as an example, experimental results on three real graph datasets demonstrate the effectiveness and efficiency of our approach. Specifically, our model achieves smaller error rate and great time reduction compared against a series of baselines, including several approximation algorithms on GED computation, and many existing graph neural network based models. To the best of our knowledge, we are among the first to adopt neural networks to explicitly model the similarity between two graphs, and provide a new direction for future research on graph similarity computation and graph similarity search.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
xiaofanfan发布了新的文献求助10
2秒前
2秒前
小马甲应助搞怪的元瑶采纳,获得10
2秒前
3秒前
4秒前
bkagyin应助开心采纳,获得10
6秒前
枣点困糕完成签到,获得积分10
6秒前
俭朴的白开水完成签到,获得积分10
7秒前
7秒前
814791097完成签到,获得积分10
9秒前
Lu完成签到 ,获得积分10
10秒前
shenshi完成签到,获得积分10
11秒前
11秒前
11秒前
果粒红豆豆完成签到 ,获得积分10
13秒前
请叫我风吹麦浪应助boltos采纳,获得10
13秒前
13秒前
英俊的铭应助科研通管家采纳,获得10
13秒前
华仔应助科研通管家采纳,获得10
13秒前
adgcxvjj应助科研通管家采纳,获得10
13秒前
小雨哥应助科研通管家采纳,获得10
13秒前
852应助科研通管家采纳,获得10
13秒前
华仔应助科研通管家采纳,获得10
14秒前
杳鸢应助科研通管家采纳,获得30
14秒前
科研通AI2S应助科研通管家采纳,获得10
14秒前
852应助科研通管家采纳,获得10
14秒前
爆米花应助科研通管家采纳,获得10
14秒前
14秒前
科研通AI5应助科研通管家采纳,获得10
14秒前
赘婿应助科研通管家采纳,获得10
14秒前
丘比特应助科研通管家采纳,获得10
14秒前
14秒前
y00应助科研通管家采纳,获得20
14秒前
15秒前
15秒前
15秒前
开心发布了新的文献求助10
15秒前
药学牛马发布了新的文献求助10
16秒前
砰砰彭发布了新的文献求助10
17秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 720
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Typology of Conditional Constructions 500
Time Matters: On Theory and Method 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3568507
求助须知:如何正确求助?哪些是违规求助? 3140168
关于积分的说明 9436261
捐赠科研通 2841016
什么是DOI,文献DOI怎么找? 1561354
邀请新用户注册赠送积分活动 730535
科研通“疑难数据库(出版商)”最低求助积分说明 718122