亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep learning based on PINN for solving 2 D0F vortex induced vibration of cylinder with high Reynolds number

雷诺数 涡激振动 雷诺平均Navier-Stokes方程 阻力 机械 经典力学 流离失所(心理学) 物理 振动 旋涡脱落 计算流体力学 涡流 湍流 计算机科学 声学 心理学 心理治疗师
作者
Chen Cheng,Peng-Fei Xu,Yong-Zheng Li,Guang-Tao Zhang
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2106.01545
摘要

Vortex-induced vibration (VIV) exists widely in natural and industrial fields. The main approaches for solving VIV problems are numerical simulations and experimental methods. However, experiment methods are difficult to obtain the whole flow field information and also high-cost while numerical simulation is extraordinary time-consuming and limited in low Reynolds number and simple geometric configuration. In addition, numerical simulations are difficult to handle the moving mesh technique. In this paper, physics informed neural network (PINN) is proposed to solve the VIV and wake-induced vibration (WIV) of cylinder with high Reynolds number. Compared to tradition data-driven neural network, the Reynolds Average Navier-Stokes (RANS) equation, by implanting an additional turbulent eddy viscosity, coupled with structure's dynamic motion equation are also embedded into the loss function. Training and validation data is obtained by computational fluid dynamic (CFD) technique. Three scenarios are proposed to validate the performance of PINN in solving VIV and WIV of cylinders. In the first place, the stiffness parameter and damping parameter are calculated via limited force data and displacement data; secondly, the flow field and lifting force/drag force are inferred by scattered velocity information; eventually, the displacement can be directly predicted only through lifting forces and drag forces based on LSTM. Results demonstrate that,compared with traditional neural network, PINN method is more effective in inferring and re-constructing the unknown parameters and flow field with high Reynolds number under VIV and WIV circumstances.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
支雨泽完成签到,获得积分10
4秒前
Alisha完成签到,获得积分10
7秒前
sun完成签到,获得积分10
20秒前
BowieHuang应助科研通管家采纳,获得10
55秒前
1分钟前
yukaka发布了新的文献求助10
1分钟前
星辰大海应助袁青寒采纳,获得10
1分钟前
光能使者完成签到 ,获得积分10
1分钟前
传奇3应助tongtong12345采纳,获得40
1分钟前
1分钟前
huibozi发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
2分钟前
Noor完成签到,获得积分10
2分钟前
Nature应助huibozi采纳,获得10
2分钟前
丘比特应助bc采纳,获得10
2分钟前
2分钟前
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
科目三应助吃死你啦啦采纳,获得10
3分钟前
忞航完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
量子星尘发布了新的文献求助10
4分钟前
渡增越发布了新的文献求助10
4分钟前
科研通AI2S应助Wei采纳,获得10
4分钟前
4分钟前
渡增越完成签到,获得积分10
4分钟前
酷炫灰狼发布了新的文献求助10
4分钟前
4分钟前
dawnfrf完成签到,获得积分10
4分钟前
daizao发布了新的文献求助30
4分钟前
ding应助科研通管家采纳,获得10
4分钟前
爆米花应助酷炫灰狼采纳,获得10
5分钟前
冰姗完成签到,获得积分10
5分钟前
聪聪发布了新的文献求助10
5分钟前
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664448
求助须知:如何正确求助?哪些是违规求助? 4861425
关于积分的说明 15107679
捐赠科研通 4823016
什么是DOI,文献DOI怎么找? 2581850
邀请新用户注册赠送积分活动 1536017
关于科研通互助平台的介绍 1494385