Deep learning based on PINN for solving 2 D0F vortex induced vibration of cylinder with high Reynolds number

雷诺数 涡激振动 雷诺平均Navier-Stokes方程 阻力 机械 经典力学 流离失所(心理学) 物理 振动 旋涡脱落 计算流体力学 涡流 湍流 计算机科学 声学 心理学 心理治疗师
作者
Chen Cheng,Peng-Fei Xu,Yong-Zheng Li,Guang-Tao Zhang
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2106.01545
摘要

Vortex-induced vibration (VIV) exists widely in natural and industrial fields. The main approaches for solving VIV problems are numerical simulations and experimental methods. However, experiment methods are difficult to obtain the whole flow field information and also high-cost while numerical simulation is extraordinary time-consuming and limited in low Reynolds number and simple geometric configuration. In addition, numerical simulations are difficult to handle the moving mesh technique. In this paper, physics informed neural network (PINN) is proposed to solve the VIV and wake-induced vibration (WIV) of cylinder with high Reynolds number. Compared to tradition data-driven neural network, the Reynolds Average Navier-Stokes (RANS) equation, by implanting an additional turbulent eddy viscosity, coupled with structure's dynamic motion equation are also embedded into the loss function. Training and validation data is obtained by computational fluid dynamic (CFD) technique. Three scenarios are proposed to validate the performance of PINN in solving VIV and WIV of cylinders. In the first place, the stiffness parameter and damping parameter are calculated via limited force data and displacement data; secondly, the flow field and lifting force/drag force are inferred by scattered velocity information; eventually, the displacement can be directly predicted only through lifting forces and drag forces based on LSTM. Results demonstrate that,compared with traditional neural network, PINN method is more effective in inferring and re-constructing the unknown parameters and flow field with high Reynolds number under VIV and WIV circumstances.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
guohuameike完成签到,获得积分10
2秒前
科研小白鼠完成签到,获得积分20
2秒前
沉静的蜗牛完成签到,获得积分10
2秒前
小聖完成签到 ,获得积分10
3秒前
嘻嘻嘻发布了新的文献求助10
3秒前
luxx完成签到,获得积分10
4秒前
山大王yoyo发布了新的文献求助10
5秒前
pluto应助科研通管家采纳,获得10
5秒前
brd应助科研通管家采纳,获得10
5秒前
汉堡包应助科研通管家采纳,获得10
5秒前
pluto应助科研通管家采纳,获得10
5秒前
领导范儿应助科研通管家采纳,获得10
5秒前
传奇3应助科研通管家采纳,获得10
5秒前
wanci应助科研通管家采纳,获得10
6秒前
bkagyin应助科研通管家采纳,获得30
6秒前
我是老大应助科研通管家采纳,获得10
6秒前
yar应助科研通管家采纳,获得10
6秒前
丘比特应助科研通管家采纳,获得10
6秒前
6秒前
酷波er应助科研通管家采纳,获得10
6秒前
坚定萤完成签到,获得积分10
6秒前
脑洞疼应助科研通管家采纳,获得10
6秒前
赘婿应助科研通管家采纳,获得10
6秒前
wuyuzegang应助科研通管家采纳,获得20
6秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
7秒前
NexusExplorer应助科研通管家采纳,获得10
7秒前
Owen应助科研通管家采纳,获得10
7秒前
天天快乐应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
传奇3应助科研通管家采纳,获得10
7秒前
7秒前
lemonli完成签到,获得积分20
8秒前
8秒前
20231125完成签到,获得积分10
8秒前
8秒前
CipherSage应助DDKK采纳,获得10
8秒前
AronHUANG发布了新的文献求助10
9秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986953
求助须知:如何正确求助?哪些是违规求助? 3529326
关于积分的说明 11244328
捐赠科研通 3267695
什么是DOI,文献DOI怎么找? 1803880
邀请新用户注册赠送积分活动 881223
科研通“疑难数据库(出版商)”最低求助积分说明 808620