亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Q-learning-Based Opportunistic Routing with an on-site architecture in UASNs

计算机科学 计算机网络 网络数据包 路由协议 上传 高效能源利用 布线(电子设计自动化) 冗余(工程) 实时计算 分布式计算 工程类 操作系统 电气工程
作者
Zhigang Jin,Chenxu Duan,Qiuling Yang,Yishan Su
出处
期刊:Ad hoc networks [Elsevier]
卷期号:119: 102553-102553 被引量:19
标识
DOI:10.1016/j.adhoc.2021.102553
摘要

Underwater Acoustic Sensor Networks (UASNs) demonstrate powerful detection capabilities. Diversified underwater applications are emerging, resulting in a substantial increase in the types and amount of perception data. Thus, UASNs need to transmit data to the data center reliably and efficiently. However, problems such as long paths, multiple hops and long delay, etc limit the quality of data transmission. Motivated by the real-time and effective upload of data, we propose a Q-learning-Based Opportunistic Routing (QBOR) protocol with an on-site architecture. The on-site architecture differs from the traditional model of placing the data center on the surface. We deploy the data center underwater closer to the data source. In order to adapt to this new architecture, the QBOR protocol is proposed, which transmits data to seabed. In QBOR, we define a reward function, in which the packet delivery probability and residual energy are considered in routing to obtain higher Packet Delivery Ratio (PDR) and energy efficiency. And a Q-value-based wait-competition mechanism derived from the opportunistic routing paradigm is proposed. This mechanism determines the forwarding priority through the competition of holding time to reduce packet redundancy and collisions. Our results show that the new architecture has obvious advantages in energy and delay. Then we analyze the performance of QBOR at varying network sparse scales from the points of the PDR, energy efficiency and end-to-end delay. Compared with other existing protocols, QBOR outperforms them in the three indicators, especially the PDR is significantly improved.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
14秒前
星辰大海应助科研通管家采纳,获得10
39秒前
所所应助科研通管家采纳,获得10
39秒前
丘比特应助科研通管家采纳,获得100
39秒前
41秒前
Chloe发布了新的文献求助10
44秒前
1分钟前
chen发布了新的文献求助10
1分钟前
orixero应助chen采纳,获得10
1分钟前
激动的似狮完成签到,获得积分10
1分钟前
2分钟前
2分钟前
2分钟前
有害学术辣鸡完成签到 ,获得积分10
2分钟前
小马甲应助Chloe采纳,获得10
3分钟前
3分钟前
Chloe发布了新的文献求助10
3分钟前
3分钟前
ly发布了新的文献求助10
3分钟前
3分钟前
所所应助Chloe采纳,获得10
3分钟前
李文岐完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
研友_VZG7GZ应助姚倩倩采纳,获得10
4分钟前
Chloe发布了新的文献求助10
4分钟前
4分钟前
姚倩倩发布了新的文献求助10
4分钟前
ding应助桃子采纳,获得10
4分钟前
FashionBoy应助Chloe采纳,获得10
4分钟前
Qiqinnn完成签到 ,获得积分10
4分钟前
fxx发布了新的文献求助10
4分钟前
5分钟前
Chloe发布了新的文献求助10
5分钟前
搜集达人应助lili采纳,获得10
5分钟前
大个应助Chloe采纳,获得10
5分钟前
wanci应助lili采纳,获得10
6分钟前
lili完成签到,获得积分10
6分钟前
彪壮的青亦完成签到,获得积分10
6分钟前
6分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1200
BIOLOGY OF NON-CHORDATES 1000
RNAの科学 ―時代を拓く生体分子― 金井 昭夫(編) 800
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
Education and Upward Social Mobility in China: Imagining Positive Sociology with Bourdieu 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3353489
求助须知:如何正确求助?哪些是违规求助? 2978125
关于积分的说明 8683737
捐赠科研通 2659467
什么是DOI,文献DOI怎么找? 1456257
科研通“疑难数据库(出版商)”最低求助积分说明 674302
邀请新用户注册赠送积分活动 665020