Q-learning-Based Opportunistic Routing with an on-site architecture in UASNs

计算机科学 计算机网络 网络数据包 路由协议 上传 高效能源利用 布线(电子设计自动化) 冗余(工程) 实时计算 分布式计算 工程类 电气工程 操作系统
作者
Zhigang Jin,Chenxu Duan,Qiuling Yang,Yishan Su
出处
期刊:Ad hoc networks [Elsevier]
卷期号:119: 102553-102553 被引量:19
标识
DOI:10.1016/j.adhoc.2021.102553
摘要

Underwater Acoustic Sensor Networks (UASNs) demonstrate powerful detection capabilities. Diversified underwater applications are emerging, resulting in a substantial increase in the types and amount of perception data. Thus, UASNs need to transmit data to the data center reliably and efficiently. However, problems such as long paths, multiple hops and long delay, etc limit the quality of data transmission. Motivated by the real-time and effective upload of data, we propose a Q-learning-Based Opportunistic Routing (QBOR) protocol with an on-site architecture. The on-site architecture differs from the traditional model of placing the data center on the surface. We deploy the data center underwater closer to the data source. In order to adapt to this new architecture, the QBOR protocol is proposed, which transmits data to seabed. In QBOR, we define a reward function, in which the packet delivery probability and residual energy are considered in routing to obtain higher Packet Delivery Ratio (PDR) and energy efficiency. And a Q-value-based wait-competition mechanism derived from the opportunistic routing paradigm is proposed. This mechanism determines the forwarding priority through the competition of holding time to reduce packet redundancy and collisions. Our results show that the new architecture has obvious advantages in energy and delay. Then we analyze the performance of QBOR at varying network sparse scales from the points of the PDR, energy efficiency and end-to-end delay. Compared with other existing protocols, QBOR outperforms them in the three indicators, especially the PDR is significantly improved.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LU发布了新的文献求助10
刚刚
1秒前
1秒前
健壮的蘑菇完成签到,获得积分10
1秒前
1秒前
lanyun00123完成签到,获得积分10
1秒前
maizi完成签到,获得积分10
2秒前
3秒前
BamnBamn发布了新的文献求助10
3秒前
小暑完成签到 ,获得积分10
3秒前
Kimo发布了新的文献求助10
4秒前
4秒前
聪明晓蓝发布了新的文献求助10
5秒前
5秒前
吉势甘发布了新的文献求助10
6秒前
燃尔完成签到,获得积分10
7秒前
shijiu发布了新的文献求助10
8秒前
Hello应助ll200207采纳,获得10
11秒前
小鹏哥完成签到,获得积分10
13秒前
13秒前
小蘑菇应助PWF采纳,获得10
15秒前
彳亍1117应助吉势甘采纳,获得20
16秒前
16秒前
17秒前
17秒前
科目三应助一条小鱼采纳,获得10
19秒前
滋滋发布了新的文献求助30
19秒前
如意向真完成签到,获得积分10
20秒前
21秒前
东北老王发布了新的文献求助30
22秒前
烟花应助罗博超采纳,获得10
23秒前
24秒前
25秒前
FashionBoy应助JUN采纳,获得10
25秒前
25秒前
123发布了新的文献求助10
26秒前
27秒前
方方不是很方完成签到,获得积分10
31秒前
Frank应助滋滋采纳,获得10
31秒前
贪玩的弱发布了新的文献求助10
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 1000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5353662
求助须知:如何正确求助?哪些是违规求助? 4486240
关于积分的说明 13965754
捐赠科研通 4386589
什么是DOI,文献DOI怎么找? 2410006
邀请新用户注册赠送积分活动 1402322
关于科研通互助平台的介绍 1376088