Revisiting 2D Convolutional Neural Networks for Graph-Based Applications

计算机科学 卷积神经网络 解算器 人工智能 图形 理论计算机科学 模式识别(心理学) 程序设计语言
作者
Yecheng Lyu,Xinming Huang,Ziming Zhang
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:45 (6): 6909-6922 被引量:2
标识
DOI:10.1109/tpami.2021.3083614
摘要

Graph convolutional networks (GCNs) are widely used in graph-based applications such as graph classification and segmentation. However, current GCNs have limitations on implementation such as network architectures due to their irregular inputs. In contrast, convolutional neural networks (CNNs) are capable of extracting rich features from large-scale input data, but they do not support general graph inputs. To bridge the gap between GCNs and CNNs, in this paper we study the problem of how to effectively and efficiently map general graphs to 2D grids that CNNs can be directly applied to, while preserving graph topology as much as possible. We therefore propose two novel graph-to-grid mapping schemes, namely, graph-preserving grid layout (GPGL) and its extension Hierarchical GPGL (H-GPGL) for computational efficiency. We formulate the GPGL problem as integer programming and further propose an approximate yet efficient solver based on a penalized Kamada-Kawai method, a well-known optimization algorithm in 2D graph drawing. We propose a novel vertex separation penalty that encourages graph vertices to lay on the grid without any overlap. Along with this image representation, even extra 2D maxpooling layers contribute to the PointNet, a widely applied point-based neural network. We demonstrate the empirical success of GPGL on general graph classification with small graphs and H-GPGL on 3D point cloud segmentation with large graphs, based on 2D CNNs including VGG16, ResNet50 and multi-scale maxout (MSM) CNN.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
科研通AI6.1应助白白采纳,获得10
1秒前
Claire_Xiang应助标致翠安采纳,获得20
1秒前
Aloysia发布了新的文献求助10
2秒前
yys10l完成签到,获得积分10
3秒前
MRu发布了新的文献求助50
3秒前
3秒前
CipherSage应助阿伟采纳,获得10
4秒前
丘比特应助Xin采纳,获得10
4秒前
小柴发布了新的文献求助10
4秒前
5秒前
6秒前
6秒前
6秒前
7秒前
今后应助jixia采纳,获得10
7秒前
23关闭了23文献求助
7秒前
搞点学术完成签到 ,获得积分10
8秒前
9秒前
10秒前
HANXIA完成签到,获得积分10
10秒前
10秒前
11秒前
研友_nxy9XZ完成签到,获得积分10
12秒前
12秒前
12秒前
cyz完成签到,获得积分10
13秒前
ChenChen发布了新的文献求助10
15秒前
苏小安发布了新的文献求助10
15秒前
16秒前
量子星尘发布了新的文献求助10
16秒前
16秒前
cyz发布了新的文献求助20
16秒前
旺旺饼干发布了新的文献求助10
17秒前
kyouu发布了新的文献求助10
17秒前
18秒前
19秒前
量子星尘发布了新的文献求助10
20秒前
张国强发布了新的文献求助10
21秒前
贪玩板栗发布了新的文献求助10
21秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5752140
求助须知:如何正确求助?哪些是违规求助? 5472900
关于积分的说明 15373131
捐赠科研通 4891251
什么是DOI,文献DOI怎么找? 2630284
邀请新用户注册赠送积分活动 1578475
关于科研通互助平台的介绍 1534465