Revisiting 2D Convolutional Neural Networks for Graph-Based Applications

计算机科学 卷积神经网络 解算器 人工智能 图形 理论计算机科学 模式识别(心理学) 程序设计语言
作者
Yecheng Lyu,Xinming Huang,Ziming Zhang
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:45 (6): 6909-6922 被引量:2
标识
DOI:10.1109/tpami.2021.3083614
摘要

Graph convolutional networks (GCNs) are widely used in graph-based applications such as graph classification and segmentation. However, current GCNs have limitations on implementation such as network architectures due to their irregular inputs. In contrast, convolutional neural networks (CNNs) are capable of extracting rich features from large-scale input data, but they do not support general graph inputs. To bridge the gap between GCNs and CNNs, in this paper we study the problem of how to effectively and efficiently map general graphs to 2D grids that CNNs can be directly applied to, while preserving graph topology as much as possible. We therefore propose two novel graph-to-grid mapping schemes, namely, graph-preserving grid layout (GPGL) and its extension Hierarchical GPGL (H-GPGL) for computational efficiency. We formulate the GPGL problem as integer programming and further propose an approximate yet efficient solver based on a penalized Kamada-Kawai method, a well-known optimization algorithm in 2D graph drawing. We propose a novel vertex separation penalty that encourages graph vertices to lay on the grid without any overlap. Along with this image representation, even extra 2D maxpooling layers contribute to the PointNet, a widely applied point-based neural network. We demonstrate the empirical success of GPGL on general graph classification with small graphs and H-GPGL on 3D point cloud segmentation with large graphs, based on 2D CNNs including VGG16, ResNet50 and multi-scale maxout (MSM) CNN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
瑾年完成签到,获得积分10
2秒前
2秒前
狂野的微笑完成签到,获得积分10
3秒前
3秒前
6秒前
7秒前
10秒前
11秒前
乐乐应助adasdad采纳,获得10
11秒前
小逊完成签到,获得积分10
11秒前
Lucas应助速速接采纳,获得10
12秒前
Orange应助batman1999采纳,获得30
12秒前
13秒前
guzhenyang完成签到,获得积分10
14秒前
jdh发布了新的文献求助10
14秒前
15秒前
15秒前
15秒前
pcyang完成签到,获得积分10
18秒前
Wendy完成签到,获得积分10
18秒前
WANGSONGLU发布了新的文献求助10
18秒前
capvirgo完成签到 ,获得积分10
18秒前
Akim应助HUANWANG采纳,获得10
18秒前
18秒前
19秒前
莫等闲完成签到,获得积分10
19秒前
YangTzeePlus发布了新的文献求助10
20秒前
慕青应助心外科医生采纳,获得10
20秒前
20秒前
英姑应助li采纳,获得10
20秒前
落 风完成签到,获得积分10
21秒前
深情安青应助草莓公主bb采纳,获得10
21秒前
chaofan完成签到 ,获得积分10
23秒前
无误发布了新的文献求助10
24秒前
壮观的寒松完成签到,获得积分10
25秒前
25秒前
Hzc发布了新的文献求助10
25秒前
WANGSONGLU完成签到,获得积分20
26秒前
27秒前
yzxzdm完成签到 ,获得积分10
27秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979719
求助须知:如何正确求助?哪些是违规求助? 3523760
关于积分的说明 11218505
捐赠科研通 3261224
什么是DOI,文献DOI怎么找? 1800507
邀请新用户注册赠送积分活动 879117
科研通“疑难数据库(出版商)”最低求助积分说明 807182