亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Revisiting 2D Convolutional Neural Networks for Graph-Based Applications

计算机科学 卷积神经网络 解算器 人工智能 图形 理论计算机科学 模式识别(心理学) 程序设计语言
作者
Yecheng Lyu,Xinming Huang,Ziming Zhang
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:45 (6): 6909-6922 被引量:2
标识
DOI:10.1109/tpami.2021.3083614
摘要

Graph convolutional networks (GCNs) are widely used in graph-based applications such as graph classification and segmentation. However, current GCNs have limitations on implementation such as network architectures due to their irregular inputs. In contrast, convolutional neural networks (CNNs) are capable of extracting rich features from large-scale input data, but they do not support general graph inputs. To bridge the gap between GCNs and CNNs, in this paper we study the problem of how to effectively and efficiently map general graphs to 2D grids that CNNs can be directly applied to, while preserving graph topology as much as possible. We therefore propose two novel graph-to-grid mapping schemes, namely, graph-preserving grid layout (GPGL) and its extension Hierarchical GPGL (H-GPGL) for computational efficiency. We formulate the GPGL problem as integer programming and further propose an approximate yet efficient solver based on a penalized Kamada-Kawai method, a well-known optimization algorithm in 2D graph drawing. We propose a novel vertex separation penalty that encourages graph vertices to lay on the grid without any overlap. Along with this image representation, even extra 2D maxpooling layers contribute to the PointNet, a widely applied point-based neural network. We demonstrate the empirical success of GPGL on general graph classification with small graphs and H-GPGL on 3D point cloud segmentation with large graphs, based on 2D CNNs including VGG16, ResNet50 and multi-scale maxout (MSM) CNN.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
修辛完成签到 ,获得积分10
2秒前
7秒前
7秒前
心随以动完成签到 ,获得积分10
7秒前
科研通AI6.1应助任性学姐采纳,获得10
12秒前
桐桐应助任性学姐采纳,获得10
12秒前
脑洞疼应助任性学姐采纳,获得10
12秒前
852应助任性学姐采纳,获得10
12秒前
桐桐应助任性学姐采纳,获得10
12秒前
科研通AI6.1应助任性学姐采纳,获得10
12秒前
科研通AI6.1应助任性学姐采纳,获得10
12秒前
科研通AI6.1应助任性学姐采纳,获得10
12秒前
桐桐应助任性学姐采纳,获得10
12秒前
隐形曼青应助任性学姐采纳,获得10
12秒前
温暖听兰发布了新的文献求助30
13秒前
14秒前
17秒前
17秒前
Akim应助w。采纳,获得10
17秒前
taku完成签到 ,获得积分10
19秒前
伯云完成签到,获得积分10
19秒前
20秒前
21秒前
azizo完成签到,获得积分10
23秒前
香蕉觅云应助读书的时候采纳,获得10
28秒前
30秒前
Akim应助温婉的不弱采纳,获得10
31秒前
尊敬的雪兰完成签到,获得积分20
35秒前
无极微光应助小吴采纳,获得20
46秒前
小枣完成签到 ,获得积分10
48秒前
59秒前
1分钟前
烂漫的涫完成签到 ,获得积分10
1分钟前
温柔锦程发布了新的文献求助10
1分钟前
等意送汝完成签到 ,获得积分10
1分钟前
哑巴和喇叭完成签到 ,获得积分10
1分钟前
kei完成签到 ,获得积分10
1分钟前
1分钟前
科研通AI6.1应助panda采纳,获得30
1分钟前
m李完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
„Semitische Wissenschaften“? 1110
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5739381
求助须知:如何正确求助?哪些是违规求助? 5385826
关于积分的说明 15339673
捐赠科研通 4881965
什么是DOI,文献DOI怎么找? 2624032
邀请新用户注册赠送积分活动 1572725
关于科研通互助平台的介绍 1529527