Revisiting 2D Convolutional Neural Networks for Graph-Based Applications

计算机科学 卷积神经网络 解算器 人工智能 图形 理论计算机科学 模式识别(心理学) 程序设计语言
作者
Yecheng Lyu,Xinming Huang,Ziming Zhang
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:45 (6): 6909-6922 被引量:2
标识
DOI:10.1109/tpami.2021.3083614
摘要

Graph convolutional networks (GCNs) are widely used in graph-based applications such as graph classification and segmentation. However, current GCNs have limitations on implementation such as network architectures due to their irregular inputs. In contrast, convolutional neural networks (CNNs) are capable of extracting rich features from large-scale input data, but they do not support general graph inputs. To bridge the gap between GCNs and CNNs, in this paper we study the problem of how to effectively and efficiently map general graphs to 2D grids that CNNs can be directly applied to, while preserving graph topology as much as possible. We therefore propose two novel graph-to-grid mapping schemes, namely, graph-preserving grid layout (GPGL) and its extension Hierarchical GPGL (H-GPGL) for computational efficiency. We formulate the GPGL problem as integer programming and further propose an approximate yet efficient solver based on a penalized Kamada-Kawai method, a well-known optimization algorithm in 2D graph drawing. We propose a novel vertex separation penalty that encourages graph vertices to lay on the grid without any overlap. Along with this image representation, even extra 2D maxpooling layers contribute to the PointNet, a widely applied point-based neural network. We demonstrate the empirical success of GPGL on general graph classification with small graphs and H-GPGL on 3D point cloud segmentation with large graphs, based on 2D CNNs including VGG16, ResNet50 and multi-scale maxout (MSM) CNN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
易安发布了新的文献求助10
刚刚
1秒前
阿居发布了新的文献求助10
1秒前
1秒前
BUBBLE发布了新的文献求助30
1秒前
eeeee完成签到,获得积分10
1秒前
3秒前
槐序完成签到,获得积分10
3秒前
傅双庆发布了新的文献求助10
4秒前
赤侯发布了新的文献求助10
5秒前
5秒前
5秒前
6秒前
eeeee发布了新的文献求助10
8秒前
畅快的柔发布了新的文献求助10
9秒前
123应助热心玉兰采纳,获得20
10秒前
称心千凝完成签到,获得积分10
10秒前
yuji238应助红尘采纳,获得10
10秒前
方千愁完成签到 ,获得积分10
11秒前
LJJ发布了新的文献求助10
11秒前
土豪的紫荷完成签到 ,获得积分10
12秒前
vicky完成签到,获得积分10
12秒前
orixero应助zzzkyt采纳,获得10
12秒前
12秒前
BUBBLE完成签到,获得积分10
13秒前
willow完成签到 ,获得积分10
13秒前
李健应助清爽灵松采纳,获得10
15秒前
foreknowledge完成签到,获得积分10
15秒前
Kannan发布了新的文献求助10
16秒前
16秒前
包子完成签到,获得积分10
18秒前
19秒前
大力的芹完成签到,获得积分10
20秒前
HR112应助称心千凝采纳,获得10
20秒前
20秒前
22秒前
所所应助化合物来采纳,获得10
24秒前
退而求其次完成签到,获得积分10
24秒前
26秒前
优美太英发布了新的文献求助10
27秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3310354
求助须知:如何正确求助?哪些是违规求助? 2943290
关于积分的说明 8513642
捐赠科研通 2618527
什么是DOI,文献DOI怎么找? 1431125
科研通“疑难数据库(出版商)”最低求助积分说明 664383
邀请新用户注册赠送积分活动 649580