亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Revisiting 2D Convolutional Neural Networks for Graph-Based Applications

计算机科学 卷积神经网络 解算器 人工智能 图形 理论计算机科学 模式识别(心理学) 程序设计语言
作者
Yecheng Lyu,Xinming Huang,Ziming Zhang
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:45 (6): 6909-6922 被引量:2
标识
DOI:10.1109/tpami.2021.3083614
摘要

Graph convolutional networks (GCNs) are widely used in graph-based applications such as graph classification and segmentation. However, current GCNs have limitations on implementation such as network architectures due to their irregular inputs. In contrast, convolutional neural networks (CNNs) are capable of extracting rich features from large-scale input data, but they do not support general graph inputs. To bridge the gap between GCNs and CNNs, in this paper we study the problem of how to effectively and efficiently map general graphs to 2D grids that CNNs can be directly applied to, while preserving graph topology as much as possible. We therefore propose two novel graph-to-grid mapping schemes, namely, graph-preserving grid layout (GPGL) and its extension Hierarchical GPGL (H-GPGL) for computational efficiency. We formulate the GPGL problem as integer programming and further propose an approximate yet efficient solver based on a penalized Kamada-Kawai method, a well-known optimization algorithm in 2D graph drawing. We propose a novel vertex separation penalty that encourages graph vertices to lay on the grid without any overlap. Along with this image representation, even extra 2D maxpooling layers contribute to the PointNet, a widely applied point-based neural network. We demonstrate the empirical success of GPGL on general graph classification with small graphs and H-GPGL on 3D point cloud segmentation with large graphs, based on 2D CNNs including VGG16, ResNet50 and multi-scale maxout (MSM) CNN.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
123456完成签到,获得积分10
2秒前
喷火球发布了新的文献求助10
23秒前
瑞水南郡完成签到,获得积分10
34秒前
FashionBoy应助rose采纳,获得10
39秒前
43秒前
rose发布了新的文献求助10
48秒前
52秒前
Ee发布了新的文献求助10
55秒前
1分钟前
JamesPei应助陈杰采纳,获得10
1分钟前
1分钟前
Suc发布了新的文献求助10
1分钟前
赘婿应助材料生采纳,获得10
1分钟前
香蕉觅云应助芳芳酱采纳,获得10
1分钟前
Suc关闭了Suc文献求助
1分钟前
拾英发布了新的文献求助10
1分钟前
1分钟前
芳芳酱发布了新的文献求助10
1分钟前
ding应助Hayat采纳,获得20
1分钟前
Owen应助拾英采纳,获得10
1分钟前
2分钟前
材料生发布了新的文献求助10
2分钟前
搜集达人应助材料生采纳,获得10
2分钟前
Zhy驳回了852应助
2分钟前
情怀应助苹果小玉采纳,获得10
2分钟前
wanci应助被杖杀的茯苓采纳,获得10
2分钟前
2分钟前
Thi发布了新的文献求助10
2分钟前
3分钟前
3分钟前
3分钟前
拾英发布了新的文献求助10
3分钟前
3分钟前
标致金毛发布了新的文献求助10
3分钟前
3分钟前
科研启动完成签到,获得积分10
3分钟前
3分钟前
3分钟前
Zhy发布了新的文献求助10
3分钟前
被杖杀的茯苓完成签到,获得积分10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5568207
求助须知:如何正确求助?哪些是违规求助? 4652651
关于积分的说明 14701915
捐赠科研通 4594523
什么是DOI,文献DOI怎么找? 2521025
邀请新用户注册赠送积分活动 1492879
关于科研通互助平台的介绍 1463696