Demand Forecasting with Supply‐Chain Information and Machine Learning: Evidence in the Pharmaceutical Industry

计算机科学 需求预测 供应链 背景(考古学) 需求模式 下游(制造业) 供求关系 时间序列 运筹学 机器学习 需求管理 运营管理 营销 业务 经济 生物 工程类 宏观经济学 古生物学 微观经济学
作者
Xiaodan Zhu,Anh Ninh,Hui Zhao,Zhenming Liu
出处
期刊:Production and Operations Management [Wiley]
卷期号:30 (9): 3231-3252 被引量:42
标识
DOI:10.1111/poms.13426
摘要

Accurate demand forecasting is critical for supply chain efficiency, especially for the pharmaceutical (pharma) supply chain due to its unique characteristics. However, limited data have prevented forecasters from pursuing advanced models. Such problems exist even when long history of demand data is available because historical data in the distant past may bring little value as market situation changes. In the meantime, demands are also affected by many hidden factors that again require a large amount of data and more sophisticated models to capture. We propose to overcome these challenges by a novel demand forecasting framework which “borrows” time series data from many other products (cross‐series training) and trains the data with advanced machine learning models (known for detecting patterns). We further improve performance of the cross‐series models through various “grouping" schemes, and learning from non‐demand features such as downstream inventory data across different products, information of supply chain structure, and relevant domain knowledge. We test our proposed framework with many modeling possibilities on two large datasets from major pharma manufacturers and our results show superior performance. Our work also provides empirical evidence of the value of downstream inventory information in the context of demand forecasting. We conduct prior and post‐hoc field work to ensure the applicability of the proposed forecasting approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Owen应助呆萌南蕾采纳,获得10
1秒前
丘比特应助文房四宝采纳,获得10
3秒前
充电宝应助LLL采纳,获得10
3秒前
Queenie发布了新的文献求助10
3秒前
上下发布了新的文献求助10
5秒前
5秒前
6秒前
传奇3应助max2023采纳,获得10
7秒前
落后的楼房完成签到,获得积分10
7秒前
10秒前
lishan发布了新的文献求助10
10秒前
陈都灵完成签到,获得积分10
12秒前
罗是一发布了新的文献求助10
13秒前
13秒前
13秒前
13秒前
14秒前
隐形曼青应助皮卡皮卡丘采纳,获得10
14秒前
木勿忘完成签到,获得积分10
14秒前
wanci发布了新的文献求助50
14秒前
14秒前
14秒前
15秒前
zhaoxintong发布了新的文献求助10
16秒前
16秒前
猫咪也疯狂完成签到,获得积分10
17秒前
小马甲应助LZN采纳,获得10
18秒前
ZHY2023发布了新的文献求助10
19秒前
max2023发布了新的文献求助10
19秒前
邱邱发布了新的文献求助30
19秒前
可乐发布了新的文献求助10
19秒前
20秒前
20秒前
Li完成签到,获得积分10
20秒前
21秒前
点点完成签到,获得积分10
23秒前
bkagyin应助拼搏向上采纳,获得10
23秒前
24秒前
符fu发布了新的文献求助10
25秒前
在水一方应助粱夏烟采纳,获得10
25秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136013
求助须知:如何正确求助?哪些是违规求助? 2786835
关于积分的说明 7779716
捐赠科研通 2443045
什么是DOI,文献DOI怎么找? 1298822
科研通“疑难数据库(出版商)”最低求助积分说明 625232
版权声明 600870