Demand Forecasting with Supply‐Chain Information and Machine Learning: Evidence in the Pharmaceutical Industry

计算机科学 需求预测 供应链 背景(考古学) 需求模式 下游(制造业) 供求关系 时间序列 领域(数学) 运筹学 机器学习 需求管理 营销 业务 经济 古生物学 宏观经济学 工程类 生物 微观经济学 数学 纯数学
作者
Xiaodan Zhu,Anh Ninh,Hui Zhao,Zhenming Liu
出处
期刊:Production and Operations Management [Wiley]
卷期号:30 (9): 3231-3252 被引量:129
标识
DOI:10.1111/poms.13426
摘要

Accurate demand forecasting is critical for supply chain efficiency, especially for the pharmaceutical (pharma) supply chain due to its unique characteristics. However, limited data have prevented forecasters from pursuing advanced models. Such problems exist even when long history of demand data is available because historical data in the distant past may bring little value as market situation changes. In the meantime, demands are also affected by many hidden factors that again require a large amount of data and more sophisticated models to capture. We propose to overcome these challenges by a novel demand forecasting framework which “borrows” time series data from many other products (cross‐series training) and trains the data with advanced machine learning models (known for detecting patterns). We further improve performance of the cross‐series models through various “grouping" schemes, and learning from non‐demand features such as downstream inventory data across different products, information of supply chain structure, and relevant domain knowledge. We test our proposed framework with many modeling possibilities on two large datasets from major pharma manufacturers and our results show superior performance. Our work also provides empirical evidence of the value of downstream inventory information in the context of demand forecasting. We conduct prior and post‐hoc field work to ensure the applicability of the proposed forecasting approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hello应助斯文曲奇采纳,获得10
1秒前
1秒前
芒果布丁发布了新的文献求助10
3秒前
华仔应助陈永伟采纳,获得10
3秒前
4秒前
英姑应助叭个了叭叭叭采纳,获得10
5秒前
6秒前
8秒前
8秒前
8秒前
9秒前
movoandy发布了新的文献求助10
10秒前
思源应助orange采纳,获得10
11秒前
东石头发布了新的文献求助10
12秒前
斯文曲奇发布了新的文献求助10
12秒前
12秒前
一条鱼发布了新的文献求助10
13秒前
上官若男应助别绪叁仟采纳,获得10
13秒前
13秒前
隐形曼青应助西蓝花战士采纳,获得10
14秒前
14秒前
fang发布了新的文献求助10
14秒前
科研通AI6应助向阳采纳,获得10
15秒前
春风十里完成签到,获得积分10
15秒前
lucky发布了新的文献求助10
16秒前
科研通AI6应助奥莉奥采纳,获得10
16秒前
16秒前
子寒发布了新的文献求助10
16秒前
17秒前
17秒前
搜集达人应助努力的学采纳,获得10
17秒前
18秒前
斯文曲奇完成签到,获得积分20
18秒前
Fred发布了新的文献求助10
18秒前
JamesPei应助xcwy采纳,获得30
19秒前
20秒前
red发布了新的文献求助10
20秒前
好好好发布了新的文献求助10
20秒前
子车茗应助甜蜜的金连采纳,获得14
21秒前
Jepping_Zhu发布了新的文献求助10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5594501
求助须知:如何正确求助?哪些是违规求助? 4680157
关于积分的说明 14813307
捐赠科研通 4647283
什么是DOI,文献DOI怎么找? 2534960
邀请新用户注册赠送积分活动 1503016
关于科研通互助平台的介绍 1469521