Demand Forecasting with Supply‐Chain Information and Machine Learning: Evidence in the Pharmaceutical Industry

计算机科学 需求预测 供应链 背景(考古学) 需求模式 下游(制造业) 供求关系 时间序列 运筹学 机器学习 需求管理 运营管理 营销 业务 经济 生物 工程类 宏观经济学 古生物学 微观经济学
作者
Xiaodan Zhu,Anh Ninh,Hui Zhao,Zhenming Liu
出处
期刊:Production and Operations Management [Wiley]
卷期号:30 (9): 3231-3252 被引量:42
标识
DOI:10.1111/poms.13426
摘要

Accurate demand forecasting is critical for supply chain efficiency, especially for the pharmaceutical (pharma) supply chain due to its unique characteristics. However, limited data have prevented forecasters from pursuing advanced models. Such problems exist even when long history of demand data is available because historical data in the distant past may bring little value as market situation changes. In the meantime, demands are also affected by many hidden factors that again require a large amount of data and more sophisticated models to capture. We propose to overcome these challenges by a novel demand forecasting framework which “borrows” time series data from many other products (cross‐series training) and trains the data with advanced machine learning models (known for detecting patterns). We further improve performance of the cross‐series models through various “grouping" schemes, and learning from non‐demand features such as downstream inventory data across different products, information of supply chain structure, and relevant domain knowledge. We test our proposed framework with many modeling possibilities on two large datasets from major pharma manufacturers and our results show superior performance. Our work also provides empirical evidence of the value of downstream inventory information in the context of demand forecasting. We conduct prior and post‐hoc field work to ensure the applicability of the proposed forecasting approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
罗YF完成签到,获得积分10
刚刚
syx发布了新的文献求助10
1秒前
Ava应助绵绵饲养手册采纳,获得30
1秒前
三七四十三完成签到,获得积分10
1秒前
liuce0307完成签到,获得积分10
1秒前
2秒前
2秒前
苏杉杉发布了新的文献求助10
2秒前
summer完成签到,获得积分10
3秒前
gzsy完成签到 ,获得积分10
3秒前
4秒前
taster完成签到,获得积分10
4秒前
4秒前
hyx发布了新的文献求助10
4秒前
5秒前
5秒前
小慧儿发布了新的文献求助10
5秒前
6秒前
叶文腾完成签到,获得积分20
6秒前
王三歲完成签到,获得积分10
6秒前
早睡早起的安完成签到,获得积分10
6秒前
烟花应助吲哚好呀采纳,获得200
6秒前
7秒前
meethaha发布了新的文献求助10
7秒前
V_I_G发布了新的文献求助10
7秒前
7秒前
8秒前
热爱生活的小彭完成签到,获得积分10
8秒前
明尘完成签到,获得积分10
8秒前
深情安青应助苏杉杉采纳,获得10
8秒前
8秒前
嘉子完成签到,获得积分10
8秒前
bgt发布了新的文献求助30
9秒前
qq完成签到,获得积分10
9秒前
叶文腾发布了新的文献求助30
9秒前
chengcheng发布了新的文献求助10
10秒前
lll完成签到,获得积分10
10秒前
孙刚发布了新的文献求助10
10秒前
透明人完成签到,获得积分10
10秒前
JoshuaChen发布了新的文献求助10
11秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987054
求助须知:如何正确求助?哪些是违规求助? 3529416
关于积分的说明 11244990
捐赠科研通 3267882
什么是DOI,文献DOI怎么找? 1803968
邀请新用户注册赠送积分活动 881257
科研通“疑难数据库(出版商)”最低求助积分说明 808650