摘要
No AccessEngineering NotesOptimal Output Trajectory Shaping Using Bézier CurvesSuwon Lee and Youdan KimSuwon Lee https://orcid.org/0000-0002-6573-6348Seoul National University, Seoul 08826, Republic of Korea*Ph.D. Candidate, Department of Aerospace Engineering; .Search for more papers by this author and Youdan Kim https://orcid.org/0000-0001-5041-8243Seoul National University, Seoul 08826, Republic of Korea†Professor, Department of Aerospace Engineering, Institute of Advanced Aerospace Technology; . Associate Fellow AIAA.Search for more papers by this authorPublished Online:29 Mar 2021https://doi.org/10.2514/1.G005887SectionsRead Now ToolsAdd to favoritesDownload citationTrack citations ShareShare onFacebookTwitterLinked InRedditEmail About References [1] LaValle S. M., Planning Algorithms, Cambridge Univ. Press, Cambridge, England, U.K., 2006, p. 79. https://doi.org/10.1017/CBO9780511546877 Google Scholar[2] Manickavasagam M., Sarkar A. K. and Vaithiyanathan V., “A Singular Perturbation Based Midcourse Guidance Law for Realistic Air-to-Air Engagement,” Defence Science Journal, Vol. 67, No. 1, 2017, pp. 108–118. https://doi.org/10.14429/dsj.67.9236 Google Scholar[3] Ren W., Jiang B. and Yang H., “A Survey on Singular Perturbation Theory in Aerospace Application,” IEEE Chinese Guidance, Navigation and Control Conference (CGNCC), Nanjing, China, Aug. 2016, pp. 675–680. https://doi.org/10.1109/CGNCC.2016.7828867 Google Scholar[4] Menon P., Iragavarapu V., Ohlmeyer E., Menon P., Iragavarapu V. and Ohlmeyer E., “Nonlinear Missile Autopilot Design Using Time-Scale Separation,” AIAA Guidance, Navigation, and Control Conference, AIAA Paper 1997-1803, Aug. 1997, 1997. https://doi.org/10.2514/6.1997-3765 Google Scholar[5] Sujit P., Saripalli S. and Sousa J. B., “Unmanned Aerial Vehicle Path Following: A Survey and Analysis of Algorithms for Fixed-Wing Unmanned Aerial Vehicless,” IEEE Control Systems, Vol. 34, No. 1, 2014, pp. 42–59. https://doi.org/10.1109/MCS.2013.2287568 CrossrefGoogle Scholar[6] Gan W. Y., Zhu D. Q., Xu W. L. and Sun B., “Survey of Trajectory Tracking Control of Autonomous Underwater Vehicles,” Journal of Marine Science and Technology, Vol. 25, No. 6, 2017, pp. 722–731. https://doi.org/10.6119/JMST-017-1226-13 Google Scholar[7] Betts J. T., “Survey of Numerical Methods for Trajectory Optimization,” Journal of Guidance, Control, and Dynamics, Vol. 21, No. 2, 1998, pp. 193–207. https://doi.org/10.2514/2.4231 LinkGoogle Scholar[8] Ann S., Lee S., Kim Y. and Ahn J., “Midcourse Guidance for Exoatmospheric Interception Using Response Surface Based Trajectory Shaping,” IEEE Transactions on Aerospace and Electronic Systems, Vol. 56, No. 5, 2020, pp. 3655–3673. https://doi.org/10.1109/TAES.2020.2976084 CrossrefGoogle Scholar[9] Devasia S., Chen D. and Paden B., “Nonlinear Inversion-Based Output Tracking,” IEEE Transactions on Automatic Control, Vol. 41, No. 7, 1996, pp. 930–942. https://doi.org/10.1109/9.508898 CrossrefGoogle Scholar[10] Romagnoli R. and Garone E., “A General Framework for Approximated Model Stable Inversion,” Automatica, Vol. 101, March 2019, pp. 182–189. https://doi.org/10.1016/j.automatica.2018.11.044 CrossrefGoogle Scholar[11] Lu P., “Inverse Dynamics Approach to Trajectory Optimization for an Aerospace Plane,” Journal of Guidance, Control, and Dynamics, Vol. 16, No. 4, 1993, pp. 726–732. https://doi.org/10.2514/3.21073 LinkGoogle Scholar[12] Sentoh E. and Bryson A. E., “Inverse and Optimal Control for Desired Outputs,” Journal of Guidance, Control, and Dynamics, Vol. 15, No. 3, 1992, pp. 687–691. https://doi.org/10.2514/3.20892 LinkGoogle Scholar[13] Lane S. H. and Stengel R. F., “Flight Control Design Using Nonlinear Inverse Dynamics,” Automatica, Vol. 24, No. 4, 1988, pp. 471–483. https://doi.org/10.1016/0005-1098(88)90092-1 CrossrefGoogle Scholar[14] Farouki R. T., Giannelli C., Mugnaini D. and Sestini A., “Path Planning with Pythagorean-Hodograph Curves for Unmanned or Autonomous Vehicles,” Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, Vol. 232, No. 7, 2018, pp. 1361–1372. https://doi.org/10.1177/0954410017690550 Google Scholar[15] Neto A. A., Macharet D. G. and Campos M. F., “Feasible Path Planning for Fixed-Wing UAVs Using Seventh Order Bézier Curves,” Journal of the Brazilian Computer Society, Vol. 19, No. 2, 2013, pp. 193–203. https://doi.org/10.1007/s13173-012-0093-3 CrossrefGoogle Scholar[16] Cichella V., Kaminer I., Walton C., Hovakimyan N. and Pascoal A. M., “Consistent Approximation of Optimal Control Problems Using Bernstein Polynomials,” IEEE 58th Conference on Decision and Control (CDC), Nice, France, Dec. 2019. https://doi.org/10.1109/CDC40024.2019.9029677 Google Scholar[17] Ricciardi L. A. and Vasile M., “Direct Transcription of Optimal Control Problems with Finite Elements on Bernstein Basis,” Journal of Guidance, Control, and Dynamics, Vol. 42, No. 2, 2019, pp. 229–243. https://doi.org/10.2514/1.G003753 LinkGoogle Scholar[18] Ghomanjani F., Farahi M. and Gachpazan M., “Bézier Control Points Method to Solve Constrained Quadratic Optimal Control of Time Varying Linear Systems,” Computational and Applied Mathematics, Vol. 31, No. 3, 2012, pp. 433–456. https://doi.org/10.1590/S1807-03022012000300001 CrossrefGoogle Scholar[19] de Dilectis F., Mortari D. and Zanetti R., “Bézier Description of Space Trajectories,” Journal of Guidance, Control, and Dynamics, Vol. 39, No. 11, 2016, pp. 2535–2539. https://doi.org/10.2514/1.G000719 LinkGoogle Scholar[20] Choe R., Puig-Navarro J., Cichella V., Xargay E. and Hovakimyan N., “Cooperative Trajectory Generation Using Pythagorean Hodograph Bézier Curves,” Journal of Guidance, Control, and Dynamics, Vol. 39, No. 8, 2016, pp. 1744–1763. https://doi.org/10.2514/1.G001531 LinkGoogle Scholar[21] Cichella V., Kaminer I., Walton C. and Hovakimyan N., “Optimal Motion Planning for Differentially Flat Systems Using Bernstein Approximation,” IEEE Control Systems Letters, Vol. 2, No. 1, 2018, pp. 181–186. https://doi.org/10.1109/LCSYS.2017.2778313 CrossrefGoogle Scholar[22] Ben-Asher J. Z., Optimal Control Theory with Aerospace Applications, AIAA Education Series, AIAA, Reston, VA, 2010, p. 161. https://doi.org/10.2514/4.867347 LinkGoogle Scholar[23] Conway B. (ed.), Spacecraft Trajectory Optimization, Cambridge Univ. Press, Cambridge, England, U.K., 2010, p. 40. https://doi.org/10.1017/CBO9780511778025 Google Scholar[24] Longuski J. M., Guzmán J. J. and Prussing J. E., Optimal Control with Aerospace Applications, Springer, New York, 2014, p. 19. https://doi.org/10.1007/978-1-4614-8945-0 CrossrefGoogle Scholar[25] Hargraves C. and Paris S., “Direct Trajectory Optimization Using Nonlinear Programming and Collocation,” Journal of Guidance, Control, and Dynamics, Vol. 10, No. 4, 1987, pp. 338–342. https://doi.org/10.2514/3.20223 LinkGoogle Scholar[26] Farouki R. T. and Sakkalis T., “Real Rational Curves Are Not ‘Unit Speed’,” Computer Aided Geometric Design, Vol. 8, No. 2, 1991, pp. 151–157. https://doi.org/10.1016/0167-8396(91)90040-I Google Scholar[27] Farouki R. T., “Optimal Parameterizations,” Computer Aided Geometric Design, Vol. 14, No. 2, 1997, pp. 153–168. https://doi.org/10.1016/S0167-8396(96)00026-X Google Scholar[28] Fleiss M., Lévine J., Martin P. and Rouchon P., “Flatness and Defect of Non-Linear Systems: Introductory Theory and Examples,” International Journal of Control, Vol. 61, No. 6, 1995, pp. 1327–1361. https://doi.org/10.1080/00207179508921959 Google Scholar[29] Khalil H., “Nonlinear Control,” Always Learning, Pearson, Upper Saddle River, NJ, 2015, p. 176. Google Scholar[30] Natanson I. P., Constructive Function Theory: Uniform Approximation, Vol. 1, Ungar, New York, 1964, p. 6. Google Scholar[31] Doha E., Bhrawy A. and Saker M., “On the Derivatives of Bernstein Polynomials: An Application for the Solution of High Even-Order Differential Equations,” Boundary Value Problems, Vol. 2011, No. 1, 2011, pp. 1–16. https://doi.org/10.1155/2011/829543 Google Scholar[32] Tekin R. and Erer K. S., “Impact Time and Angle Control Against Moving Targets with Look Angle Shaping,” Journal of Guidance, Control, and Dynamics, Vol. 43, No. 5, 2020, pp. 1020–1025. https://doi.org/10.2514/1.G004762 LinkGoogle Scholar Previous article Next article FiguresReferencesRelatedDetailsCited byA Generative Verification Framework on Statistical Stability for Data-Driven ControllersIEEE Access, Vol. 11Time-coordination entry guidance using a range-determined strategyAerospace Science and Technology, Vol. 129Fast costate estimation for indirect trajectory optimization using Bezier-curve-based shaping approachAerospace Science and Technology, Vol. 126A direct method-based suboptimal attitude guidance for accurate ground-target tracking maneuversAdvances in Space Research, Vol. 69, No. 11Information Fusion for Cooperative Indoor Positioning Using Bézier CurvesIEEE Sensors Journal, Vol. 22, No. 6 What's Popular Volume 44, Number 5May 2021 CrossmarkInformationCopyright © 2021 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved. All requests for copying and permission to reprint should be submitted to CCC at www.copyright.com; employ the eISSN 1533-3884 to initiate your request. See also AIAA Rights and Permissions www.aiaa.org/randp. TopicsAlgorithms and Data StructuresAviation CommunicationCommunication SystemComputer Programming and LanguageComputing and InformaticsComputing, Information, and CommunicationControl TheoryData ScienceFeedback ControlGuidance, Navigation, and Control SystemsOptimal Control TheoryOptimization AlgorithmRADARRobot KinematicsRoboticsSpacecraft GuidanceSpacecraft Guidance and Control KeywordsTrajectory OptimizationCollocation MethodMotion PlanningNonlinear SystemsNumerical OptimizationRunge Kutta MethodsSequential Quadratic ProgrammingFeedback LinearizationFlight Path AngleMATLABPDF Received19 July 2020Accepted5 February 2021Published online29 March 2021