Optimal Output Trajectory Shaping Using Bézier Curves

弹道 轨迹优化 贝塞尔曲线 计算机科学 控制理论(社会学) 数学 最优控制 数学优化 几何学 物理 人工智能 控制(管理) 天文
作者
Suwon Lee,Youdan Kim
出处
期刊:Journal of Guidance Control and Dynamics [American Institute of Aeronautics and Astronautics]
卷期号:44 (5): 1027-1035 被引量:12
标识
DOI:10.2514/1.g005887
摘要

No AccessEngineering NotesOptimal Output Trajectory Shaping Using Bézier CurvesSuwon Lee and Youdan KimSuwon Lee https://orcid.org/0000-0002-6573-6348Seoul National University, Seoul 08826, Republic of Korea*Ph.D. Candidate, Department of Aerospace Engineering; .Search for more papers by this author and Youdan Kim https://orcid.org/0000-0001-5041-8243Seoul National University, Seoul 08826, Republic of Korea†Professor, Department of Aerospace Engineering, Institute of Advanced Aerospace Technology; . Associate Fellow AIAA.Search for more papers by this authorPublished Online:29 Mar 2021https://doi.org/10.2514/1.G005887SectionsRead Now ToolsAdd to favoritesDownload citationTrack citations ShareShare onFacebookTwitterLinked InRedditEmail About References [1] LaValle S. M., Planning Algorithms, Cambridge Univ. Press, Cambridge, England, U.K., 2006, p. 79. https://doi.org/10.1017/CBO9780511546877 Google Scholar[2] Manickavasagam M., Sarkar A. K. and Vaithiyanathan V., “A Singular Perturbation Based Midcourse Guidance Law for Realistic Air-to-Air Engagement,” Defence Science Journal, Vol. 67, No. 1, 2017, pp. 108–118. https://doi.org/10.14429/dsj.67.9236 Google Scholar[3] Ren W., Jiang B. and Yang H., “A Survey on Singular Perturbation Theory in Aerospace Application,” IEEE Chinese Guidance, Navigation and Control Conference (CGNCC), Nanjing, China, Aug. 2016, pp. 675–680. https://doi.org/10.1109/CGNCC.2016.7828867 Google Scholar[4] Menon P., Iragavarapu V., Ohlmeyer E., Menon P., Iragavarapu V. and Ohlmeyer E., “Nonlinear Missile Autopilot Design Using Time-Scale Separation,” AIAA Guidance, Navigation, and Control Conference, AIAA Paper 1997-1803, Aug. 1997, 1997. https://doi.org/10.2514/6.1997-3765 Google Scholar[5] Sujit P., Saripalli S. and Sousa J. B., “Unmanned Aerial Vehicle Path Following: A Survey and Analysis of Algorithms for Fixed-Wing Unmanned Aerial Vehicless,” IEEE Control Systems, Vol. 34, No. 1, 2014, pp. 42–59. https://doi.org/10.1109/MCS.2013.2287568 CrossrefGoogle Scholar[6] Gan W. Y., Zhu D. Q., Xu W. L. and Sun B., “Survey of Trajectory Tracking Control of Autonomous Underwater Vehicles,” Journal of Marine Science and Technology, Vol. 25, No. 6, 2017, pp. 722–731. https://doi.org/10.6119/JMST-017-1226-13 Google Scholar[7] Betts J. T., “Survey of Numerical Methods for Trajectory Optimization,” Journal of Guidance, Control, and Dynamics, Vol. 21, No. 2, 1998, pp. 193–207. https://doi.org/10.2514/2.4231 LinkGoogle Scholar[8] Ann S., Lee S., Kim Y. and Ahn J., “Midcourse Guidance for Exoatmospheric Interception Using Response Surface Based Trajectory Shaping,” IEEE Transactions on Aerospace and Electronic Systems, Vol. 56, No. 5, 2020, pp. 3655–3673. https://doi.org/10.1109/TAES.2020.2976084 CrossrefGoogle Scholar[9] Devasia S., Chen D. and Paden B., “Nonlinear Inversion-Based Output Tracking,” IEEE Transactions on Automatic Control, Vol. 41, No. 7, 1996, pp. 930–942. https://doi.org/10.1109/9.508898 CrossrefGoogle Scholar[10] Romagnoli R. and Garone E., “A General Framework for Approximated Model Stable Inversion,” Automatica, Vol. 101, March 2019, pp. 182–189. https://doi.org/10.1016/j.automatica.2018.11.044 CrossrefGoogle Scholar[11] Lu P., “Inverse Dynamics Approach to Trajectory Optimization for an Aerospace Plane,” Journal of Guidance, Control, and Dynamics, Vol. 16, No. 4, 1993, pp. 726–732. https://doi.org/10.2514/3.21073 LinkGoogle Scholar[12] Sentoh E. and Bryson A. E., “Inverse and Optimal Control for Desired Outputs,” Journal of Guidance, Control, and Dynamics, Vol. 15, No. 3, 1992, pp. 687–691. https://doi.org/10.2514/3.20892 LinkGoogle Scholar[13] Lane S. H. and Stengel R. F., “Flight Control Design Using Nonlinear Inverse Dynamics,” Automatica, Vol. 24, No. 4, 1988, pp. 471–483. https://doi.org/10.1016/0005-1098(88)90092-1 CrossrefGoogle Scholar[14] Farouki R. T., Giannelli C., Mugnaini D. and Sestini A., “Path Planning with Pythagorean-Hodograph Curves for Unmanned or Autonomous Vehicles,” Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, Vol. 232, No. 7, 2018, pp. 1361–1372. https://doi.org/10.1177/0954410017690550 Google Scholar[15] Neto A. A., Macharet D. G. and Campos M. F., “Feasible Path Planning for Fixed-Wing UAVs Using Seventh Order Bézier Curves,” Journal of the Brazilian Computer Society, Vol. 19, No. 2, 2013, pp. 193–203. https://doi.org/10.1007/s13173-012-0093-3 CrossrefGoogle Scholar[16] Cichella V., Kaminer I., Walton C., Hovakimyan N. and Pascoal A. M., “Consistent Approximation of Optimal Control Problems Using Bernstein Polynomials,” IEEE 58th Conference on Decision and Control (CDC), Nice, France, Dec. 2019. https://doi.org/10.1109/CDC40024.2019.9029677 Google Scholar[17] Ricciardi L. A. and Vasile M., “Direct Transcription of Optimal Control Problems with Finite Elements on Bernstein Basis,” Journal of Guidance, Control, and Dynamics, Vol. 42, No. 2, 2019, pp. 229–243. https://doi.org/10.2514/1.G003753 LinkGoogle Scholar[18] Ghomanjani F., Farahi M. and Gachpazan M., “Bézier Control Points Method to Solve Constrained Quadratic Optimal Control of Time Varying Linear Systems,” Computational and Applied Mathematics, Vol. 31, No. 3, 2012, pp. 433–456. https://doi.org/10.1590/S1807-03022012000300001 CrossrefGoogle Scholar[19] de Dilectis F., Mortari D. and Zanetti R., “Bézier Description of Space Trajectories,” Journal of Guidance, Control, and Dynamics, Vol. 39, No. 11, 2016, pp. 2535–2539. https://doi.org/10.2514/1.G000719 LinkGoogle Scholar[20] Choe R., Puig-Navarro J., Cichella V., Xargay E. and Hovakimyan N., “Cooperative Trajectory Generation Using Pythagorean Hodograph Bézier Curves,” Journal of Guidance, Control, and Dynamics, Vol. 39, No. 8, 2016, pp. 1744–1763. https://doi.org/10.2514/1.G001531 LinkGoogle Scholar[21] Cichella V., Kaminer I., Walton C. and Hovakimyan N., “Optimal Motion Planning for Differentially Flat Systems Using Bernstein Approximation,” IEEE Control Systems Letters, Vol. 2, No. 1, 2018, pp. 181–186. https://doi.org/10.1109/LCSYS.2017.2778313 CrossrefGoogle Scholar[22] Ben-Asher J. Z., Optimal Control Theory with Aerospace Applications, AIAA Education Series, AIAA, Reston, VA, 2010, p. 161. https://doi.org/10.2514/4.867347 LinkGoogle Scholar[23] Conway B. (ed.), Spacecraft Trajectory Optimization, Cambridge Univ. Press, Cambridge, England, U.K., 2010, p. 40. https://doi.org/10.1017/CBO9780511778025 Google Scholar[24] Longuski J. M., Guzmán J. J. and Prussing J. E., Optimal Control with Aerospace Applications, Springer, New York, 2014, p. 19. https://doi.org/10.1007/978-1-4614-8945-0 CrossrefGoogle Scholar[25] Hargraves C. and Paris S., “Direct Trajectory Optimization Using Nonlinear Programming and Collocation,” Journal of Guidance, Control, and Dynamics, Vol. 10, No. 4, 1987, pp. 338–342. https://doi.org/10.2514/3.20223 LinkGoogle Scholar[26] Farouki R. T. and Sakkalis T., “Real Rational Curves Are Not ‘Unit Speed’,” Computer Aided Geometric Design, Vol. 8, No. 2, 1991, pp. 151–157. https://doi.org/10.1016/0167-8396(91)90040-I Google Scholar[27] Farouki R. T., “Optimal Parameterizations,” Computer Aided Geometric Design, Vol. 14, No. 2, 1997, pp. 153–168. https://doi.org/10.1016/S0167-8396(96)00026-X Google Scholar[28] Fleiss M., Lévine J., Martin P. and Rouchon P., “Flatness and Defect of Non-Linear Systems: Introductory Theory and Examples,” International Journal of Control, Vol. 61, No. 6, 1995, pp. 1327–1361. https://doi.org/10.1080/00207179508921959 Google Scholar[29] Khalil H., “Nonlinear Control,” Always Learning, Pearson, Upper Saddle River, NJ, 2015, p. 176. Google Scholar[30] Natanson I. P., Constructive Function Theory: Uniform Approximation, Vol. 1, Ungar, New York, 1964, p. 6. Google Scholar[31] Doha E., Bhrawy A. and Saker M., “On the Derivatives of Bernstein Polynomials: An Application for the Solution of High Even-Order Differential Equations,” Boundary Value Problems, Vol. 2011, No. 1, 2011, pp. 1–16. https://doi.org/10.1155/2011/829543 Google Scholar[32] Tekin R. and Erer K. S., “Impact Time and Angle Control Against Moving Targets with Look Angle Shaping,” Journal of Guidance, Control, and Dynamics, Vol. 43, No. 5, 2020, pp. 1020–1025. https://doi.org/10.2514/1.G004762 LinkGoogle Scholar Previous article Next article FiguresReferencesRelatedDetailsCited byA Generative Verification Framework on Statistical Stability for Data-Driven ControllersIEEE Access, Vol. 11Time-coordination entry guidance using a range-determined strategyAerospace Science and Technology, Vol. 129Fast costate estimation for indirect trajectory optimization using Bezier-curve-based shaping approachAerospace Science and Technology, Vol. 126A direct method-based suboptimal attitude guidance for accurate ground-target tracking maneuversAdvances in Space Research, Vol. 69, No. 11Information Fusion for Cooperative Indoor Positioning Using Bézier CurvesIEEE Sensors Journal, Vol. 22, No. 6 What's Popular Volume 44, Number 5May 2021 CrossmarkInformationCopyright © 2021 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved. All requests for copying and permission to reprint should be submitted to CCC at www.copyright.com; employ the eISSN 1533-3884 to initiate your request. See also AIAA Rights and Permissions www.aiaa.org/randp. TopicsAlgorithms and Data StructuresAviation CommunicationCommunication SystemComputer Programming and LanguageComputing and InformaticsComputing, Information, and CommunicationControl TheoryData ScienceFeedback ControlGuidance, Navigation, and Control SystemsOptimal Control TheoryOptimization AlgorithmRADARRobot KinematicsRoboticsSpacecraft GuidanceSpacecraft Guidance and Control KeywordsTrajectory OptimizationCollocation MethodMotion PlanningNonlinear SystemsNumerical OptimizationRunge Kutta MethodsSequential Quadratic ProgrammingFeedback LinearizationFlight Path AngleMATLABPDF Received19 July 2020Accepted5 February 2021Published online29 March 2021
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
村医发布了新的文献求助30
1秒前
lesyeuxdexx完成签到 ,获得积分10
1秒前
3秒前
科研通AI2S应助义气萝卜头采纳,获得10
3秒前
杨小六发布了新的文献求助10
4秒前
悦耳的亦旋完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
7秒前
8秒前
scichu完成签到,获得积分10
10秒前
whh发布了新的文献求助10
10秒前
夹子方糖发布了新的文献求助10
10秒前
12秒前
12秒前
13秒前
正直摇伽发布了新的文献求助10
15秒前
阿瓒完成签到 ,获得积分20
16秒前
111发布了新的文献求助10
17秒前
17秒前
18秒前
Jasper应助眠茶醒药采纳,获得10
18秒前
20秒前
21秒前
轻轻发布了新的文献求助10
21秒前
四叶曦完成签到 ,获得积分10
21秒前
千寻完成签到 ,获得积分10
22秒前
ASXC完成签到,获得积分20
24秒前
ecoli发布了新的文献求助10
26秒前
慕青应助徐徐采纳,获得10
28秒前
还单身的竺完成签到 ,获得积分10
28秒前
29秒前
搜集达人应助Led采纳,获得10
31秒前
徐5V完成签到,获得积分10
32秒前
孙尉钦完成签到,获得积分10
34秒前
要减肥发布了新的文献求助10
35秒前
调调发布了新的文献求助10
35秒前
nki发布了新的文献求助10
37秒前
39秒前
丸子完成签到,获得积分10
40秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3976253
求助须知:如何正确求助?哪些是违规求助? 3520405
关于积分的说明 11203301
捐赠科研通 3257028
什么是DOI,文献DOI怎么找? 1798589
邀请新用户注册赠送积分活动 877755
科研通“疑难数据库(出版商)”最低求助积分说明 806521