Optimal Output Trajectory Shaping Using Bézier Curves

弹道 轨迹优化 贝塞尔曲线 计算机科学 控制理论(社会学) 数学 最优控制 数学优化 几何学 物理 人工智能 控制(管理) 天文
作者
Suwon Lee,Youdan Kim
出处
期刊:Journal of Guidance Control and Dynamics [American Institute of Aeronautics and Astronautics]
卷期号:44 (5): 1027-1035 被引量:12
标识
DOI:10.2514/1.g005887
摘要

No AccessEngineering NotesOptimal Output Trajectory Shaping Using Bézier CurvesSuwon Lee and Youdan KimSuwon Lee https://orcid.org/0000-0002-6573-6348Seoul National University, Seoul 08826, Republic of Korea*Ph.D. Candidate, Department of Aerospace Engineering; .Search for more papers by this author and Youdan Kim https://orcid.org/0000-0001-5041-8243Seoul National University, Seoul 08826, Republic of Korea†Professor, Department of Aerospace Engineering, Institute of Advanced Aerospace Technology; . Associate Fellow AIAA.Search for more papers by this authorPublished Online:29 Mar 2021https://doi.org/10.2514/1.G005887SectionsRead Now ToolsAdd to favoritesDownload citationTrack citations ShareShare onFacebookTwitterLinked InRedditEmail About References [1] LaValle S. M., Planning Algorithms, Cambridge Univ. Press, Cambridge, England, U.K., 2006, p. 79. https://doi.org/10.1017/CBO9780511546877 Google Scholar[2] Manickavasagam M., Sarkar A. K. and Vaithiyanathan V., “A Singular Perturbation Based Midcourse Guidance Law for Realistic Air-to-Air Engagement,” Defence Science Journal, Vol. 67, No. 1, 2017, pp. 108–118. https://doi.org/10.14429/dsj.67.9236 Google Scholar[3] Ren W., Jiang B. and Yang H., “A Survey on Singular Perturbation Theory in Aerospace Application,” IEEE Chinese Guidance, Navigation and Control Conference (CGNCC), Nanjing, China, Aug. 2016, pp. 675–680. https://doi.org/10.1109/CGNCC.2016.7828867 Google Scholar[4] Menon P., Iragavarapu V., Ohlmeyer E., Menon P., Iragavarapu V. and Ohlmeyer E., “Nonlinear Missile Autopilot Design Using Time-Scale Separation,” AIAA Guidance, Navigation, and Control Conference, AIAA Paper 1997-1803, Aug. 1997, 1997. https://doi.org/10.2514/6.1997-3765 Google Scholar[5] Sujit P., Saripalli S. and Sousa J. B., “Unmanned Aerial Vehicle Path Following: A Survey and Analysis of Algorithms for Fixed-Wing Unmanned Aerial Vehicless,” IEEE Control Systems, Vol. 34, No. 1, 2014, pp. 42–59. https://doi.org/10.1109/MCS.2013.2287568 CrossrefGoogle Scholar[6] Gan W. Y., Zhu D. Q., Xu W. L. and Sun B., “Survey of Trajectory Tracking Control of Autonomous Underwater Vehicles,” Journal of Marine Science and Technology, Vol. 25, No. 6, 2017, pp. 722–731. https://doi.org/10.6119/JMST-017-1226-13 Google Scholar[7] Betts J. T., “Survey of Numerical Methods for Trajectory Optimization,” Journal of Guidance, Control, and Dynamics, Vol. 21, No. 2, 1998, pp. 193–207. https://doi.org/10.2514/2.4231 LinkGoogle Scholar[8] Ann S., Lee S., Kim Y. and Ahn J., “Midcourse Guidance for Exoatmospheric Interception Using Response Surface Based Trajectory Shaping,” IEEE Transactions on Aerospace and Electronic Systems, Vol. 56, No. 5, 2020, pp. 3655–3673. https://doi.org/10.1109/TAES.2020.2976084 CrossrefGoogle Scholar[9] Devasia S., Chen D. and Paden B., “Nonlinear Inversion-Based Output Tracking,” IEEE Transactions on Automatic Control, Vol. 41, No. 7, 1996, pp. 930–942. https://doi.org/10.1109/9.508898 CrossrefGoogle Scholar[10] Romagnoli R. and Garone E., “A General Framework for Approximated Model Stable Inversion,” Automatica, Vol. 101, March 2019, pp. 182–189. https://doi.org/10.1016/j.automatica.2018.11.044 CrossrefGoogle Scholar[11] Lu P., “Inverse Dynamics Approach to Trajectory Optimization for an Aerospace Plane,” Journal of Guidance, Control, and Dynamics, Vol. 16, No. 4, 1993, pp. 726–732. https://doi.org/10.2514/3.21073 LinkGoogle Scholar[12] Sentoh E. and Bryson A. E., “Inverse and Optimal Control for Desired Outputs,” Journal of Guidance, Control, and Dynamics, Vol. 15, No. 3, 1992, pp. 687–691. https://doi.org/10.2514/3.20892 LinkGoogle Scholar[13] Lane S. H. and Stengel R. F., “Flight Control Design Using Nonlinear Inverse Dynamics,” Automatica, Vol. 24, No. 4, 1988, pp. 471–483. https://doi.org/10.1016/0005-1098(88)90092-1 CrossrefGoogle Scholar[14] Farouki R. T., Giannelli C., Mugnaini D. and Sestini A., “Path Planning with Pythagorean-Hodograph Curves for Unmanned or Autonomous Vehicles,” Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, Vol. 232, No. 7, 2018, pp. 1361–1372. https://doi.org/10.1177/0954410017690550 Google Scholar[15] Neto A. A., Macharet D. G. and Campos M. F., “Feasible Path Planning for Fixed-Wing UAVs Using Seventh Order Bézier Curves,” Journal of the Brazilian Computer Society, Vol. 19, No. 2, 2013, pp. 193–203. https://doi.org/10.1007/s13173-012-0093-3 CrossrefGoogle Scholar[16] Cichella V., Kaminer I., Walton C., Hovakimyan N. and Pascoal A. M., “Consistent Approximation of Optimal Control Problems Using Bernstein Polynomials,” IEEE 58th Conference on Decision and Control (CDC), Nice, France, Dec. 2019. https://doi.org/10.1109/CDC40024.2019.9029677 Google Scholar[17] Ricciardi L. A. and Vasile M., “Direct Transcription of Optimal Control Problems with Finite Elements on Bernstein Basis,” Journal of Guidance, Control, and Dynamics, Vol. 42, No. 2, 2019, pp. 229–243. https://doi.org/10.2514/1.G003753 LinkGoogle Scholar[18] Ghomanjani F., Farahi M. and Gachpazan M., “Bézier Control Points Method to Solve Constrained Quadratic Optimal Control of Time Varying Linear Systems,” Computational and Applied Mathematics, Vol. 31, No. 3, 2012, pp. 433–456. https://doi.org/10.1590/S1807-03022012000300001 CrossrefGoogle Scholar[19] de Dilectis F., Mortari D. and Zanetti R., “Bézier Description of Space Trajectories,” Journal of Guidance, Control, and Dynamics, Vol. 39, No. 11, 2016, pp. 2535–2539. https://doi.org/10.2514/1.G000719 LinkGoogle Scholar[20] Choe R., Puig-Navarro J., Cichella V., Xargay E. and Hovakimyan N., “Cooperative Trajectory Generation Using Pythagorean Hodograph Bézier Curves,” Journal of Guidance, Control, and Dynamics, Vol. 39, No. 8, 2016, pp. 1744–1763. https://doi.org/10.2514/1.G001531 LinkGoogle Scholar[21] Cichella V., Kaminer I., Walton C. and Hovakimyan N., “Optimal Motion Planning for Differentially Flat Systems Using Bernstein Approximation,” IEEE Control Systems Letters, Vol. 2, No. 1, 2018, pp. 181–186. https://doi.org/10.1109/LCSYS.2017.2778313 CrossrefGoogle Scholar[22] Ben-Asher J. Z., Optimal Control Theory with Aerospace Applications, AIAA Education Series, AIAA, Reston, VA, 2010, p. 161. https://doi.org/10.2514/4.867347 LinkGoogle Scholar[23] Conway B. (ed.), Spacecraft Trajectory Optimization, Cambridge Univ. Press, Cambridge, England, U.K., 2010, p. 40. https://doi.org/10.1017/CBO9780511778025 Google Scholar[24] Longuski J. M., Guzmán J. J. and Prussing J. E., Optimal Control with Aerospace Applications, Springer, New York, 2014, p. 19. https://doi.org/10.1007/978-1-4614-8945-0 CrossrefGoogle Scholar[25] Hargraves C. and Paris S., “Direct Trajectory Optimization Using Nonlinear Programming and Collocation,” Journal of Guidance, Control, and Dynamics, Vol. 10, No. 4, 1987, pp. 338–342. https://doi.org/10.2514/3.20223 LinkGoogle Scholar[26] Farouki R. T. and Sakkalis T., “Real Rational Curves Are Not ‘Unit Speed’,” Computer Aided Geometric Design, Vol. 8, No. 2, 1991, pp. 151–157. https://doi.org/10.1016/0167-8396(91)90040-I Google Scholar[27] Farouki R. T., “Optimal Parameterizations,” Computer Aided Geometric Design, Vol. 14, No. 2, 1997, pp. 153–168. https://doi.org/10.1016/S0167-8396(96)00026-X Google Scholar[28] Fleiss M., Lévine J., Martin P. and Rouchon P., “Flatness and Defect of Non-Linear Systems: Introductory Theory and Examples,” International Journal of Control, Vol. 61, No. 6, 1995, pp. 1327–1361. https://doi.org/10.1080/00207179508921959 Google Scholar[29] Khalil H., “Nonlinear Control,” Always Learning, Pearson, Upper Saddle River, NJ, 2015, p. 176. Google Scholar[30] Natanson I. P., Constructive Function Theory: Uniform Approximation, Vol. 1, Ungar, New York, 1964, p. 6. Google Scholar[31] Doha E., Bhrawy A. and Saker M., “On the Derivatives of Bernstein Polynomials: An Application for the Solution of High Even-Order Differential Equations,” Boundary Value Problems, Vol. 2011, No. 1, 2011, pp. 1–16. https://doi.org/10.1155/2011/829543 Google Scholar[32] Tekin R. and Erer K. S., “Impact Time and Angle Control Against Moving Targets with Look Angle Shaping,” Journal of Guidance, Control, and Dynamics, Vol. 43, No. 5, 2020, pp. 1020–1025. https://doi.org/10.2514/1.G004762 LinkGoogle Scholar Previous article Next article FiguresReferencesRelatedDetailsCited byA Generative Verification Framework on Statistical Stability for Data-Driven ControllersIEEE Access, Vol. 11Time-coordination entry guidance using a range-determined strategyAerospace Science and Technology, Vol. 129Fast costate estimation for indirect trajectory optimization using Bezier-curve-based shaping approachAerospace Science and Technology, Vol. 126A direct method-based suboptimal attitude guidance for accurate ground-target tracking maneuversAdvances in Space Research, Vol. 69, No. 11Information Fusion for Cooperative Indoor Positioning Using Bézier CurvesIEEE Sensors Journal, Vol. 22, No. 6 What's Popular Volume 44, Number 5May 2021 CrossmarkInformationCopyright © 2021 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved. All requests for copying and permission to reprint should be submitted to CCC at www.copyright.com; employ the eISSN 1533-3884 to initiate your request. See also AIAA Rights and Permissions www.aiaa.org/randp. TopicsAlgorithms and Data StructuresAviation CommunicationCommunication SystemComputer Programming and LanguageComputing and InformaticsComputing, Information, and CommunicationControl TheoryData ScienceFeedback ControlGuidance, Navigation, and Control SystemsOptimal Control TheoryOptimization AlgorithmRADARRobot KinematicsRoboticsSpacecraft GuidanceSpacecraft Guidance and Control KeywordsTrajectory OptimizationCollocation MethodMotion PlanningNonlinear SystemsNumerical OptimizationRunge Kutta MethodsSequential Quadratic ProgrammingFeedback LinearizationFlight Path AngleMATLABPDF Received19 July 2020Accepted5 February 2021Published online29 March 2021
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
大端发布了新的文献求助10
1秒前
王小姐不吃药完成签到 ,获得积分10
1秒前
1秒前
领导范儿应助孟双采纳,获得10
1秒前
iNk应助合适尔槐采纳,获得20
2秒前
4秒前
单薄飞莲完成签到,获得积分10
4秒前
Crystal发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
5秒前
Jasper应助漂流的云朵采纳,获得10
5秒前
6秒前
ding应助呆呆熊采纳,获得10
6秒前
背后飞柏完成签到,获得积分10
7秒前
7秒前
麦丰完成签到,获得积分10
7秒前
澈哩发布了新的文献求助10
7秒前
gg发布了新的文献求助10
8秒前
小鱼饼完成签到,获得积分10
8秒前
balabala发布了新的文献求助10
8秒前
m31发布了新的文献求助10
9秒前
DX发布了新的文献求助30
9秒前
9秒前
9秒前
独孤骄子完成签到 ,获得积分0
9秒前
10秒前
替我活着发布了新的文献求助10
10秒前
能干亦云发布了新的文献求助400
10秒前
ZZZ发布了新的文献求助10
10秒前
10秒前
淘气科研完成签到,获得积分10
11秒前
科研小狗完成签到,获得积分10
11秒前
12秒前
12秒前
Owen应助和和采纳,获得10
13秒前
14秒前
14秒前
大模型应助Han采纳,获得10
14秒前
Raymond发布了新的文献求助10
15秒前
科目三应助lfzw采纳,获得10
15秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3970949
求助须知:如何正确求助?哪些是违规求助? 3515634
关于积分的说明 11179061
捐赠科研通 3250769
什么是DOI,文献DOI怎么找? 1795474
邀请新用户注册赠送积分活动 875831
科研通“疑难数据库(出版商)”最低求助积分说明 805188