BreathTrack

呼气 呼吸 计算机科学 通风(建筑) 呼吸频率 语音识别 医学 麻醉 工程类 内科学 机械工程 血压 心率
作者
Bashima Islam,Mahbubur Rahman,Tousif Ahmed,Mahmuda Ahmed,Md. Mehedi Hasan,Viswam Nathan,Korosh Vatanparvar,Eghlim Nemati,Jilong Kuang,Jun Gao
出处
期刊:Proceedings of the ACM on interactive, mobile, wearable and ubiquitous technologies [Association for Computing Machinery]
卷期号:5 (3): 1-22 被引量:14
标识
DOI:10.1145/3478123
摘要

Breathing biomarkers, such as breathing rate, fractional inspiratory time, and inhalation-exhalation ratio, are vital for monitoring the user's health and well-being. Accurate estimation of such biomarkers requires breathing phase detection, i.e., inhalation and exhalation. However, traditional breathing phase monitoring relies on uncomfortable equipment, e.g., chestbands. Smartphone acoustic sensors have shown promising results for passive breathing monitoring during sleep or guided breathing. However, detecting breathing phases using acoustic data can be challenging for various reasons. One of the major obstacles is the complexity of annotating breathing sounds due to inaudible parts in regular breathing and background noises. This paper assesses the potential of using smartphone acoustic sensors for passive unguided breathing phase monitoring in a natural environment. We address the annotation challenges by developing a novel variant of the teacher-student training method for transferring knowledge from an inertial sensor to an acoustic sensor, eliminating the need for manual breathing sound annotation by fusing signal processing with deep learning techniques. We train and evaluate our model on the breathing data collected from 131 subjects, including healthy individuals and respiratory patients. Experimental results show that our model can detect breathing phases with 77.33% accuracy using acoustic sensors. We further present an example use-case of breathing phase-detection by first estimating the biomarkers from the estimated breathing phases and then using these biomarkers for pulmonary patient detection. Using the detected breathing phases, we can estimate fractional inspiratory time with 92.08% accuracy, the inhalation-exhalation ratio with 86.76% accuracy, and the breathing rate with 91.74% accuracy. Moreover, we can distinguish respiratory patients from healthy individuals with up to 76% accuracy. This paper is the first to show the feasibility of detecting regular breathing phases towards passively monitoring respiratory health and well-being using acoustic data captured by a smartphone.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
Owen应助小太阳采纳,获得10
5秒前
5秒前
如果我沉默完成签到,获得积分10
6秒前
科研怪人完成签到 ,获得积分10
7秒前
bxj发布了新的文献求助10
7秒前
dddhp完成签到,获得积分20
7秒前
和平星发布了新的文献求助10
8秒前
隐形曼青应助顺心裙子采纳,获得10
9秒前
10秒前
10秒前
cpe发布了新的文献求助10
10秒前
Hello应助酷炫的傲易采纳,获得10
11秒前
无情的烨磊完成签到,获得积分10
12秒前
pizi关注了科研通微信公众号
12秒前
小二郎应助莫西莫西采纳,获得10
13秒前
平常馒头完成签到 ,获得积分10
15秒前
17秒前
科目三应助sherwing2009采纳,获得10
20秒前
还寻思啥呢完成签到,获得积分10
20秒前
周冬华完成签到,获得积分10
21秒前
23秒前
毕双洲完成签到,获得积分10
23秒前
23秒前
沐泽完成签到,获得积分10
23秒前
24秒前
科研通AI2S应助悦耳的芒果采纳,获得10
24秒前
JJ_fly完成签到,获得积分10
24秒前
pizi发布了新的文献求助10
24秒前
25秒前
25秒前
i学习完成签到,获得积分10
26秒前
27秒前
27秒前
莫西莫西发布了新的文献求助10
27秒前
28秒前
28秒前
zhikaiyici应助还寻思啥呢采纳,获得10
30秒前
加菲丰丰应助sqk采纳,获得50
30秒前
李明发布了新的文献求助10
30秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3155891
求助须知:如何正确求助?哪些是违规求助? 2807086
关于积分的说明 7871889
捐赠科研通 2465477
什么是DOI,文献DOI怎么找? 1312260
科研通“疑难数据库(出版商)”最低求助积分说明 629958
版权声明 601905